Evaluate
\frac{y}{2}-1
Expand
\frac{y}{2}-1
Graph
Share
Copied to clipboard
\frac{\frac{yy}{y}-\frac{4}{y}}{\frac{4}{y}+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{yy-4}{y}}{\frac{4}{y}+2}
Since \frac{yy}{y} and \frac{4}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-4}{y}}{\frac{4}{y}+2}
Do the multiplications in yy-4.
\frac{\frac{y^{2}-4}{y}}{\frac{4}{y}+\frac{2y}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{y}{y}.
\frac{\frac{y^{2}-4}{y}}{\frac{4+2y}{y}}
Since \frac{4}{y} and \frac{2y}{y} have the same denominator, add them by adding their numerators.
\frac{\left(y^{2}-4\right)y}{y\left(4+2y\right)}
Divide \frac{y^{2}-4}{y} by \frac{4+2y}{y} by multiplying \frac{y^{2}-4}{y} by the reciprocal of \frac{4+2y}{y}.
\frac{y^{2}-4}{2y+4}
Cancel out y in both numerator and denominator.
\frac{\left(y-2\right)\left(y+2\right)}{2\left(y+2\right)}
Factor the expressions that are not already factored.
\frac{y-2}{2}
Cancel out y+2 in both numerator and denominator.
\frac{\frac{yy}{y}-\frac{4}{y}}{\frac{4}{y}+2}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\frac{\frac{yy-4}{y}}{\frac{4}{y}+2}
Since \frac{yy}{y} and \frac{4}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{2}-4}{y}}{\frac{4}{y}+2}
Do the multiplications in yy-4.
\frac{\frac{y^{2}-4}{y}}{\frac{4}{y}+\frac{2y}{y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{y}{y}.
\frac{\frac{y^{2}-4}{y}}{\frac{4+2y}{y}}
Since \frac{4}{y} and \frac{2y}{y} have the same denominator, add them by adding their numerators.
\frac{\left(y^{2}-4\right)y}{y\left(4+2y\right)}
Divide \frac{y^{2}-4}{y} by \frac{4+2y}{y} by multiplying \frac{y^{2}-4}{y} by the reciprocal of \frac{4+2y}{y}.
\frac{y^{2}-4}{2y+4}
Cancel out y in both numerator and denominator.
\frac{\left(y-2\right)\left(y+2\right)}{2\left(y+2\right)}
Factor the expressions that are not already factored.
\frac{y-2}{2}
Cancel out y+2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}