Evaluate
\frac{2y}{5}
Expand
\frac{2y}{5}
Graph
Share
Copied to clipboard
\frac{\frac{5y}{5}-\frac{2y-5}{5}}{\frac{15}{10}+\frac{5}{2y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{5}{5}.
\frac{\frac{5y-\left(2y-5\right)}{5}}{\frac{15}{10}+\frac{5}{2y}}
Since \frac{5y}{5} and \frac{2y-5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5y-2y+5}{5}}{\frac{15}{10}+\frac{5}{2y}}
Do the multiplications in 5y-\left(2y-5\right).
\frac{\frac{3y+5}{5}}{\frac{15}{10}+\frac{5}{2y}}
Combine like terms in 5y-2y+5.
\frac{\frac{3y+5}{5}}{\frac{3}{2}+\frac{5}{2y}}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{3y+5}{5}}{\frac{3y}{2y}+\frac{5}{2y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2y is 2y. Multiply \frac{3}{2} times \frac{y}{y}.
\frac{\frac{3y+5}{5}}{\frac{3y+5}{2y}}
Since \frac{3y}{2y} and \frac{5}{2y} have the same denominator, add them by adding their numerators.
\frac{\left(3y+5\right)\times 2y}{5\left(3y+5\right)}
Divide \frac{3y+5}{5} by \frac{3y+5}{2y} by multiplying \frac{3y+5}{5} by the reciprocal of \frac{3y+5}{2y}.
\frac{2y}{5}
Cancel out 3y+5 in both numerator and denominator.
\frac{\frac{5y}{5}-\frac{2y-5}{5}}{\frac{15}{10}+\frac{5}{2y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{5}{5}.
\frac{\frac{5y-\left(2y-5\right)}{5}}{\frac{15}{10}+\frac{5}{2y}}
Since \frac{5y}{5} and \frac{2y-5}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5y-2y+5}{5}}{\frac{15}{10}+\frac{5}{2y}}
Do the multiplications in 5y-\left(2y-5\right).
\frac{\frac{3y+5}{5}}{\frac{15}{10}+\frac{5}{2y}}
Combine like terms in 5y-2y+5.
\frac{\frac{3y+5}{5}}{\frac{3}{2}+\frac{5}{2y}}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{3y+5}{5}}{\frac{3y}{2y}+\frac{5}{2y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2y is 2y. Multiply \frac{3}{2} times \frac{y}{y}.
\frac{\frac{3y+5}{5}}{\frac{3y+5}{2y}}
Since \frac{3y}{2y} and \frac{5}{2y} have the same denominator, add them by adding their numerators.
\frac{\left(3y+5\right)\times 2y}{5\left(3y+5\right)}
Divide \frac{3y+5}{5} by \frac{3y+5}{2y} by multiplying \frac{3y+5}{5} by the reciprocal of \frac{3y+5}{2y}.
\frac{2y}{5}
Cancel out 3y+5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}