Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y}{y+5}-\frac{5y+9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Factor y^{2}+10y+25.
\frac{y\left(y+5\right)}{\left(y+5\right)^{2}}-\frac{5y+9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+5 and \left(y+5\right)^{2} is \left(y+5\right)^{2}. Multiply \frac{y}{y+5} times \frac{y+5}{y+5}.
\frac{y\left(y+5\right)-\left(5y+9\right)}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Since \frac{y\left(y+5\right)}{\left(y+5\right)^{2}} and \frac{5y+9}{\left(y+5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+5y-5y-9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Do the multiplications in y\left(y+5\right)-\left(5y+9\right).
\frac{y^{2}-9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Combine like terms in y^{2}+5y-5y-9.
\frac{y^{2}-9}{\left(y+5\right)^{2}}-\frac{2y}{3\left(y+5\right)}
Factor 3y+15.
\frac{3\left(y^{2}-9\right)}{3\left(y+5\right)^{2}}-\frac{2y\left(y+5\right)}{3\left(y+5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y+5\right)^{2} and 3\left(y+5\right) is 3\left(y+5\right)^{2}. Multiply \frac{y^{2}-9}{\left(y+5\right)^{2}} times \frac{3}{3}. Multiply \frac{2y}{3\left(y+5\right)} times \frac{y+5}{y+5}.
\frac{3\left(y^{2}-9\right)-2y\left(y+5\right)}{3\left(y+5\right)^{2}}
Since \frac{3\left(y^{2}-9\right)}{3\left(y+5\right)^{2}} and \frac{2y\left(y+5\right)}{3\left(y+5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}-27-2y^{2}-10y}{3\left(y+5\right)^{2}}
Do the multiplications in 3\left(y^{2}-9\right)-2y\left(y+5\right).
\frac{y^{2}-27-10y}{3\left(y+5\right)^{2}}
Combine like terms in 3y^{2}-27-2y^{2}-10y.
\frac{y^{2}-27-10y}{3y^{2}+30y+75}
Expand 3\left(y+5\right)^{2}.
\frac{y}{y+5}-\frac{5y+9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Factor y^{2}+10y+25.
\frac{y\left(y+5\right)}{\left(y+5\right)^{2}}-\frac{5y+9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y+5 and \left(y+5\right)^{2} is \left(y+5\right)^{2}. Multiply \frac{y}{y+5} times \frac{y+5}{y+5}.
\frac{y\left(y+5\right)-\left(5y+9\right)}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Since \frac{y\left(y+5\right)}{\left(y+5\right)^{2}} and \frac{5y+9}{\left(y+5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+5y-5y-9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Do the multiplications in y\left(y+5\right)-\left(5y+9\right).
\frac{y^{2}-9}{\left(y+5\right)^{2}}-\frac{2y}{3y+15}
Combine like terms in y^{2}+5y-5y-9.
\frac{y^{2}-9}{\left(y+5\right)^{2}}-\frac{2y}{3\left(y+5\right)}
Factor 3y+15.
\frac{3\left(y^{2}-9\right)}{3\left(y+5\right)^{2}}-\frac{2y\left(y+5\right)}{3\left(y+5\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y+5\right)^{2} and 3\left(y+5\right) is 3\left(y+5\right)^{2}. Multiply \frac{y^{2}-9}{\left(y+5\right)^{2}} times \frac{3}{3}. Multiply \frac{2y}{3\left(y+5\right)} times \frac{y+5}{y+5}.
\frac{3\left(y^{2}-9\right)-2y\left(y+5\right)}{3\left(y+5\right)^{2}}
Since \frac{3\left(y^{2}-9\right)}{3\left(y+5\right)^{2}} and \frac{2y\left(y+5\right)}{3\left(y+5\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{3y^{2}-27-2y^{2}-10y}{3\left(y+5\right)^{2}}
Do the multiplications in 3\left(y^{2}-9\right)-2y\left(y+5\right).
\frac{y^{2}-27-10y}{3\left(y+5\right)^{2}}
Combine like terms in 3y^{2}-27-2y^{2}-10y.
\frac{y^{2}-27-10y}{3y^{2}+30y+75}
Expand 3\left(y+5\right)^{2}.