Solve for y
y\geq \frac{139200}{47}
Graph
Share
Copied to clipboard
5y\times 0.5+6\left(3600-y\right)\times 1.2\leq 12000
Multiply both sides of the equation by 300, the least common multiple of 60,50. Since 300 is positive, the inequality direction remains the same.
2.5y+6\left(3600-y\right)\times 1.2\leq 12000
Multiply 5 and 0.5 to get 2.5.
2.5y+7.2\left(3600-y\right)\leq 12000
Multiply 6 and 1.2 to get 7.2.
2.5y+25920-7.2y\leq 12000
Use the distributive property to multiply 7.2 by 3600-y.
-4.7y+25920\leq 12000
Combine 2.5y and -7.2y to get -4.7y.
-4.7y\leq 12000-25920
Subtract 25920 from both sides.
-4.7y\leq -13920
Subtract 25920 from 12000 to get -13920.
y\geq \frac{-13920}{-4.7}
Divide both sides by -4.7. Since -4.7 is negative, the inequality direction is changed.
y\geq \frac{-139200}{-47}
Expand \frac{-13920}{-4.7} by multiplying both numerator and the denominator by 10.
y\geq \frac{139200}{47}
Fraction \frac{-139200}{-47} can be simplified to \frac{139200}{47} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}