Solve for y
y=4\sqrt{2}\approx 5.656854249
y=-4\sqrt{2}\approx -5.656854249
Graph
Share
Copied to clipboard
\frac{y^{2}}{2^{2}}+8=16
To raise \frac{y}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{y^{2}}{2^{2}}+\frac{8\times 2^{2}}{2^{2}}=16
To add or subtract expressions, expand them to make their denominators the same. Multiply 8 times \frac{2^{2}}{2^{2}}.
\frac{y^{2}+8\times 2^{2}}{2^{2}}=16
Since \frac{y^{2}}{2^{2}} and \frac{8\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{y^{2}+32}{2^{2}}=16
Do the multiplications in y^{2}+8\times 2^{2}.
\frac{y^{2}+32}{4}=16
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}y^{2}+8=16
Divide each term of y^{2}+32 by 4 to get \frac{1}{4}y^{2}+8.
\frac{1}{4}y^{2}=16-8
Subtract 8 from both sides.
\frac{1}{4}y^{2}=8
Subtract 8 from 16 to get 8.
y^{2}=8\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
y^{2}=32
Multiply 8 and 4 to get 32.
y=4\sqrt{2} y=-4\sqrt{2}
Take the square root of both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}