Solve for x
x=\frac{1-z-y}{z-1}
z\neq 1
Solve for y
y=-\left(z-1\right)\left(x+1\right)
z\neq 1
Share
Copied to clipboard
y=\left(-z+1\right)x-z+1
Multiply both sides of the equation by -z+1.
y=-zx+x-z+1
Use the distributive property to multiply -z+1 by x.
-zx+x-z+1=y
Swap sides so that all variable terms are on the left hand side.
-zx+x+1=y+z
Add z to both sides.
-zx+x=y+z-1
Subtract 1 from both sides.
\left(-z+1\right)x=y+z-1
Combine all terms containing x.
\left(1-z\right)x=y+z-1
The equation is in standard form.
\frac{\left(1-z\right)x}{1-z}=\frac{y+z-1}{1-z}
Divide both sides by 1-z.
x=\frac{y+z-1}{1-z}
Dividing by 1-z undoes the multiplication by 1-z.
y=\left(-z+1\right)x-z+1
Multiply both sides of the equation by -z+1.
y=-zx+x-z+1
Use the distributive property to multiply -z+1 by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}