Evaluate
\frac{-2y^{2}+3y-6}{3\left(y^{2}+3\right)}
Factor
\frac{-2y^{2}+3y-6}{3\left(y^{2}+3\right)}
Graph
Share
Copied to clipboard
\frac{y}{3+y^{2}}-\frac{2}{3}
Calculate the square root of 9 and get 3.
\frac{3y}{3\left(y^{2}+3\right)}-\frac{2\left(y^{2}+3\right)}{3\left(y^{2}+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3+y^{2} and 3 is 3\left(y^{2}+3\right). Multiply \frac{y}{3+y^{2}} times \frac{3}{3}. Multiply \frac{2}{3} times \frac{y^{2}+3}{y^{2}+3}.
\frac{3y-2\left(y^{2}+3\right)}{3\left(y^{2}+3\right)}
Since \frac{3y}{3\left(y^{2}+3\right)} and \frac{2\left(y^{2}+3\right)}{3\left(y^{2}+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3y-2y^{2}-6}{3\left(y^{2}+3\right)}
Do the multiplications in 3y-2\left(y^{2}+3\right).
\frac{3y-2y^{2}-6}{3y^{2}+9}
Expand 3\left(y^{2}+3\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}