Solve for x
x=-\frac{\left(\sqrt{3}-2\sqrt{6}\right)y}{3}
Solve for y
y=\frac{\left(\sqrt{3}+2\sqrt{6}\right)x}{7}
Graph
Share
Copied to clipboard
\frac{x}{1+\frac{3\sqrt{2}}{2}}=\frac{y}{\sqrt{3}+\frac{\sqrt{6}}{2}}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\frac{3\sqrt{2}}{2}+1}x=\frac{y}{\frac{\sqrt{6}}{2}+\sqrt{3}}
The equation is in standard form.
\frac{\frac{1}{\frac{3\sqrt{2}}{2}+1}x\left(\frac{3\sqrt{2}}{2}+1\right)}{1}=\frac{\left(-\frac{\left(\sqrt{6}-2\sqrt{3}\right)y}{3}\right)\left(\frac{3\sqrt{2}}{2}+1\right)}{1}
Divide both sides by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1}.
x=\frac{\left(-\frac{\left(\sqrt{6}-2\sqrt{3}\right)y}{3}\right)\left(\frac{3\sqrt{2}}{2}+1\right)}{1}
Dividing by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1} undoes the multiplication by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1}.
x=-\frac{\left(2\sqrt{3}-4\sqrt{6}\right)y}{6}
Divide -\frac{y\left(\sqrt{6}-2\sqrt{3}\right)}{3} by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1}.
\frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}y=\frac{x}{\frac{3\sqrt{2}}{2}+1}
The equation is in standard form.
\frac{\frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}y\left(\frac{\sqrt{6}}{2}+\sqrt{3}\right)}{1}=\frac{3\sqrt{2}x-2x}{7\times \frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}}
Divide both sides by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1}.
y=\frac{3\sqrt{2}x-2x}{7\times \frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}}
Dividing by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1} undoes the multiplication by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1}.
y=\frac{\left(2\sqrt{3}+4\sqrt{6}\right)x}{14}
Divide \frac{-2x+3x\sqrt{2}}{7} by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}