Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x}{1+\frac{3\sqrt{2}}{2}}=\frac{y}{\sqrt{3}+\frac{\sqrt{6}}{2}}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\frac{3\sqrt{2}}{2}+1}x=\frac{y}{\frac{\sqrt{6}}{2}+\sqrt{3}}
The equation is in standard form.
\frac{\frac{1}{\frac{3\sqrt{2}}{2}+1}x\left(\frac{3\sqrt{2}}{2}+1\right)}{1}=\frac{\left(-\frac{\left(\sqrt{6}-2\sqrt{3}\right)y}{3}\right)\left(\frac{3\sqrt{2}}{2}+1\right)}{1}
Divide both sides by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1}.
x=\frac{\left(-\frac{\left(\sqrt{6}-2\sqrt{3}\right)y}{3}\right)\left(\frac{3\sqrt{2}}{2}+1\right)}{1}
Dividing by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1} undoes the multiplication by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1}.
x=-\frac{\left(2\sqrt{3}-4\sqrt{6}\right)y}{6}
Divide -\frac{y\left(\sqrt{6}-2\sqrt{3}\right)}{3} by \left(1+\frac{3}{2}\sqrt{2}\right)^{-1}.
\frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}y=\frac{x}{\frac{3\sqrt{2}}{2}+1}
The equation is in standard form.
\frac{\frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}y\left(\frac{\sqrt{6}}{2}+\sqrt{3}\right)}{1}=\frac{3\sqrt{2}x-2x}{7\times \frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}}
Divide both sides by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1}.
y=\frac{3\sqrt{2}x-2x}{7\times \frac{1}{\frac{\sqrt{6}}{2}+\sqrt{3}}}
Dividing by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1} undoes the multiplication by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1}.
y=\frac{\left(2\sqrt{3}+4\sqrt{6}\right)x}{14}
Divide \frac{-2x+3x\sqrt{2}}{7} by \left(\sqrt{3}+\frac{1}{2}\sqrt{6}\right)^{-1}.