Evaluate
y
Differentiate w.r.t. y
1
Share
Copied to clipboard
\frac{y^{6}xxy^{4}}{yxy^{3}xy^{5}}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
\frac{y^{10}xx}{yxy^{3}xy^{5}}
To multiply powers of the same base, add their exponents. Add 6 and 4 to get 10.
\frac{y^{10}x^{2}}{yxy^{3}xy^{5}}
Multiply x and x to get x^{2}.
\frac{y^{10}x^{2}}{y^{4}xxy^{5}}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\frac{y^{10}x^{2}}{y^{9}xx}
To multiply powers of the same base, add their exponents. Add 4 and 5 to get 9.
\frac{y^{10}x^{2}}{y^{9}x^{2}}
Multiply x and x to get x^{2}.
y
Cancel out x^{2}y^{9} in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{xxy^{3}y^{4}}{xxy^{3}y^{5}}y^{3-1})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y}y^{2})
Do the arithmetic.
2\times \frac{1}{y}y^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{2}{y}y^{1}
Do the arithmetic.
\frac{2}{y}y
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}