Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)}}{\frac{y^{2}-c^{2}}{15y-15c}}
Multiply \frac{y^{2}-yc-2c^{2}}{10y+5c} times \frac{4y^{2}-c^{2}}{3y-6c} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)}}{\frac{\left(y+c\right)\left(y-c\right)}{15\left(y-c\right)}}
Factor the expressions that are not already factored in \frac{y^{2}-c^{2}}{15y-15c}.
\frac{\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)}}{\frac{y+c}{15}}
Cancel out y-c in both numerator and denominator.
\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)\times 15}{\left(10y+5c\right)\left(3y-6c\right)\left(y+c\right)}
Divide \frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)} by \frac{y+c}{15} by multiplying \frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)} by the reciprocal of \frac{y+c}{15}.
\frac{15\left(y+c\right)\left(2y+c\right)\left(y-2c\right)\left(2y-c\right)}{3\times 5\left(y+c\right)\left(2y+c\right)\left(y-2c\right)}
Factor the expressions that are not already factored.
2y-c
Cancel out 3\times 5\left(y+c\right)\left(2y+c\right)\left(y-2c\right) in both numerator and denominator.
\frac{\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)}}{\frac{y^{2}-c^{2}}{15y-15c}}
Multiply \frac{y^{2}-yc-2c^{2}}{10y+5c} times \frac{4y^{2}-c^{2}}{3y-6c} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)}}{\frac{\left(y+c\right)\left(y-c\right)}{15\left(y-c\right)}}
Factor the expressions that are not already factored in \frac{y^{2}-c^{2}}{15y-15c}.
\frac{\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)}}{\frac{y+c}{15}}
Cancel out y-c in both numerator and denominator.
\frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)\times 15}{\left(10y+5c\right)\left(3y-6c\right)\left(y+c\right)}
Divide \frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)} by \frac{y+c}{15} by multiplying \frac{\left(y^{2}-yc-2c^{2}\right)\left(4y^{2}-c^{2}\right)}{\left(10y+5c\right)\left(3y-6c\right)} by the reciprocal of \frac{y+c}{15}.
\frac{15\left(y+c\right)\left(2y+c\right)\left(y-2c\right)\left(2y-c\right)}{3\times 5\left(y+c\right)\left(2y+c\right)\left(y-2c\right)}
Factor the expressions that are not already factored.
2y-c
Cancel out 3\times 5\left(y+c\right)\left(2y+c\right)\left(y-2c\right) in both numerator and denominator.