Solve for a
a=-\frac{y^{2}-x}{xy-1}
x=0\text{ or }y\neq \frac{1}{x}
Solve for x
\left\{\begin{matrix}x=-\frac{y^{2}-a}{ay-1}\text{, }&\left(y\neq 1\text{ and }a=0\text{ and }y\neq 0\right)\text{ or }\left(y\neq 1\text{ and }y\neq 0\text{ and }y\neq \frac{1}{a}\text{ and }|y|\neq \sqrt{a}\text{ and }a>0\right)\text{ or }\left(y\neq 1\text{ and }y\neq 0\text{ and }a=y^{2}\right)\text{ or }\left(y\neq 1\text{ and }y\neq 0\text{ and }y\neq \frac{1}{a}\text{ and }a<0\right)\text{ or }\left(y\neq 0\text{ and }a=1\text{ and }y\neq 1\right)\text{ or }y=0\\x\neq 1\text{, }&y=1\text{ and }a=1\end{matrix}\right.
Graph
Share
Copied to clipboard
y^{2}-x=a\left(-xy+1\right)
Multiply both sides of the equation by -xy+1.
y^{2}-x=-axy+a
Use the distributive property to multiply a by -xy+1.
-axy+a=y^{2}-x
Swap sides so that all variable terms are on the left hand side.
\left(-xy+1\right)a=y^{2}-x
Combine all terms containing a.
\left(1-xy\right)a=y^{2}-x
The equation is in standard form.
\frac{\left(1-xy\right)a}{1-xy}=\frac{y^{2}-x}{1-xy}
Divide both sides by 1-xy.
a=\frac{y^{2}-x}{1-xy}
Dividing by 1-xy undoes the multiplication by 1-xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}