Evaluate
-\frac{x}{2}
Expand
-\frac{x}{2}
Share
Copied to clipboard
\frac{\left(-3x+y\right)\left(3x+y\right)}{2x\left(3x+y\right)}\times \frac{x^{2}}{3x-y}
Factor the expressions that are not already factored in \frac{y^{2}-9x^{2}}{6x^{2}+2xy}.
\frac{-3x+y}{2x}\times \frac{x^{2}}{3x-y}
Cancel out 3x+y in both numerator and denominator.
\frac{\left(-3x+y\right)x^{2}}{2x\left(3x-y\right)}
Multiply \frac{-3x+y}{2x} times \frac{x^{2}}{3x-y} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(3x-y\right)x^{2}}{2x\left(3x-y\right)}
Extract the negative sign in -3x+y.
\frac{-x}{2}
Cancel out x\left(3x-y\right) in both numerator and denominator.
\frac{\left(-3x+y\right)\left(3x+y\right)}{2x\left(3x+y\right)}\times \frac{x^{2}}{3x-y}
Factor the expressions that are not already factored in \frac{y^{2}-9x^{2}}{6x^{2}+2xy}.
\frac{-3x+y}{2x}\times \frac{x^{2}}{3x-y}
Cancel out 3x+y in both numerator and denominator.
\frac{\left(-3x+y\right)x^{2}}{2x\left(3x-y\right)}
Multiply \frac{-3x+y}{2x} times \frac{x^{2}}{3x-y} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(3x-y\right)x^{2}}{2x\left(3x-y\right)}
Extract the negative sign in -3x+y.
\frac{-x}{2}
Cancel out x\left(3x-y\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}