Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{y^{2}y}{y}-\frac{1}{y}}{1+y+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{y}{y}.
\frac{\frac{y^{2}y-1}{y}}{1+y+\frac{1}{y^{2}}}
Since \frac{y^{2}y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{3}-1}{y}}{1+y+\frac{1}{y^{2}}}
Do the multiplications in y^{2}y-1.
\frac{\frac{y^{3}-1}{y}}{\frac{\left(1+y\right)y^{2}}{y^{2}}+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+y times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{3}-1}{y}}{\frac{\left(1+y\right)y^{2}+1}{y^{2}}}
Since \frac{\left(1+y\right)y^{2}}{y^{2}} and \frac{1}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}-1}{y}}{\frac{y^{2}+y^{3}+1}{y^{2}}}
Do the multiplications in \left(1+y\right)y^{2}+1.
\frac{\left(y^{3}-1\right)y^{2}}{y\left(y^{2}+y^{3}+1\right)}
Divide \frac{y^{3}-1}{y} by \frac{y^{2}+y^{3}+1}{y^{2}} by multiplying \frac{y^{3}-1}{y} by the reciprocal of \frac{y^{2}+y^{3}+1}{y^{2}}.
\frac{y\left(y^{3}-1\right)}{y^{3}+y^{2}+1}
Cancel out y in both numerator and denominator.
\frac{y^{4}-y}{y^{3}+y^{2}+1}
Use the distributive property to multiply y by y^{3}-1.
\frac{\frac{y^{2}y}{y}-\frac{1}{y}}{1+y+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{2} times \frac{y}{y}.
\frac{\frac{y^{2}y-1}{y}}{1+y+\frac{1}{y^{2}}}
Since \frac{y^{2}y}{y} and \frac{1}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{y^{3}-1}{y}}{1+y+\frac{1}{y^{2}}}
Do the multiplications in y^{2}y-1.
\frac{\frac{y^{3}-1}{y}}{\frac{\left(1+y\right)y^{2}}{y^{2}}+\frac{1}{y^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+y times \frac{y^{2}}{y^{2}}.
\frac{\frac{y^{3}-1}{y}}{\frac{\left(1+y\right)y^{2}+1}{y^{2}}}
Since \frac{\left(1+y\right)y^{2}}{y^{2}} and \frac{1}{y^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{y^{3}-1}{y}}{\frac{y^{2}+y^{3}+1}{y^{2}}}
Do the multiplications in \left(1+y\right)y^{2}+1.
\frac{\left(y^{3}-1\right)y^{2}}{y\left(y^{2}+y^{3}+1\right)}
Divide \frac{y^{3}-1}{y} by \frac{y^{2}+y^{3}+1}{y^{2}} by multiplying \frac{y^{3}-1}{y} by the reciprocal of \frac{y^{2}+y^{3}+1}{y^{2}}.
\frac{y\left(y^{3}-1\right)}{y^{3}+y^{2}+1}
Cancel out y in both numerator and denominator.
\frac{y^{4}-y}{y^{3}+y^{2}+1}
Use the distributive property to multiply y by y^{3}-1.