Solve for y
y=5\sqrt{41}+25\approx 57.015621187
y=25-5\sqrt{41}\approx -7.015621187
Graph
Share
Copied to clipboard
\frac{1}{2}y^{2}-25y-200=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times \frac{1}{2}\left(-200\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -25 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-25\right)±\sqrt{625-4\times \frac{1}{2}\left(-200\right)}}{2\times \frac{1}{2}}
Square -25.
y=\frac{-\left(-25\right)±\sqrt{625-2\left(-200\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
y=\frac{-\left(-25\right)±\sqrt{625+400}}{2\times \frac{1}{2}}
Multiply -2 times -200.
y=\frac{-\left(-25\right)±\sqrt{1025}}{2\times \frac{1}{2}}
Add 625 to 400.
y=\frac{-\left(-25\right)±5\sqrt{41}}{2\times \frac{1}{2}}
Take the square root of 1025.
y=\frac{25±5\sqrt{41}}{2\times \frac{1}{2}}
The opposite of -25 is 25.
y=\frac{25±5\sqrt{41}}{1}
Multiply 2 times \frac{1}{2}.
y=\frac{5\sqrt{41}+25}{1}
Now solve the equation y=\frac{25±5\sqrt{41}}{1} when ± is plus. Add 25 to 5\sqrt{41}.
y=5\sqrt{41}+25
Divide 25+5\sqrt{41} by 1.
y=\frac{25-5\sqrt{41}}{1}
Now solve the equation y=\frac{25±5\sqrt{41}}{1} when ± is minus. Subtract 5\sqrt{41} from 25.
y=25-5\sqrt{41}
Divide 25-5\sqrt{41} by 1.
y=5\sqrt{41}+25 y=25-5\sqrt{41}
The equation is now solved.
\frac{1}{2}y^{2}-25y-200=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}y^{2}-25y-200-\left(-200\right)=-\left(-200\right)
Add 200 to both sides of the equation.
\frac{1}{2}y^{2}-25y=-\left(-200\right)
Subtracting -200 from itself leaves 0.
\frac{1}{2}y^{2}-25y=200
Subtract -200 from 0.
\frac{\frac{1}{2}y^{2}-25y}{\frac{1}{2}}=\frac{200}{\frac{1}{2}}
Multiply both sides by 2.
y^{2}+\left(-\frac{25}{\frac{1}{2}}\right)y=\frac{200}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
y^{2}-50y=\frac{200}{\frac{1}{2}}
Divide -25 by \frac{1}{2} by multiplying -25 by the reciprocal of \frac{1}{2}.
y^{2}-50y=400
Divide 200 by \frac{1}{2} by multiplying 200 by the reciprocal of \frac{1}{2}.
y^{2}-50y+\left(-25\right)^{2}=400+\left(-25\right)^{2}
Divide -50, the coefficient of the x term, by 2 to get -25. Then add the square of -25 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-50y+625=400+625
Square -25.
y^{2}-50y+625=1025
Add 400 to 625.
\left(y-25\right)^{2}=1025
Factor y^{2}-50y+625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-25\right)^{2}}=\sqrt{1025}
Take the square root of both sides of the equation.
y-25=5\sqrt{41} y-25=-5\sqrt{41}
Simplify.
y=5\sqrt{41}+25 y=25-5\sqrt{41}
Add 25 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}