Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-4y+4=12y
Multiply both sides of the equation by 2.
y^{2}-4y+4-12y=0
Subtract 12y from both sides.
y^{2}-16y+4=0
Combine -4y and -12y to get -16y.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 4}}{2}
Square -16.
y=\frac{-\left(-16\right)±\sqrt{256-16}}{2}
Multiply -4 times 4.
y=\frac{-\left(-16\right)±\sqrt{240}}{2}
Add 256 to -16.
y=\frac{-\left(-16\right)±4\sqrt{15}}{2}
Take the square root of 240.
y=\frac{16±4\sqrt{15}}{2}
The opposite of -16 is 16.
y=\frac{4\sqrt{15}+16}{2}
Now solve the equation y=\frac{16±4\sqrt{15}}{2} when ± is plus. Add 16 to 4\sqrt{15}.
y=2\sqrt{15}+8
Divide 16+4\sqrt{15} by 2.
y=\frac{16-4\sqrt{15}}{2}
Now solve the equation y=\frac{16±4\sqrt{15}}{2} when ± is minus. Subtract 4\sqrt{15} from 16.
y=8-2\sqrt{15}
Divide 16-4\sqrt{15} by 2.
y=2\sqrt{15}+8 y=8-2\sqrt{15}
The equation is now solved.
y^{2}-4y+4=12y
Multiply both sides of the equation by 2.
y^{2}-4y+4-12y=0
Subtract 12y from both sides.
y^{2}-16y+4=0
Combine -4y and -12y to get -16y.
y^{2}-16y=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
y^{2}-16y+\left(-8\right)^{2}=-4+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-16y+64=-4+64
Square -8.
y^{2}-16y+64=60
Add -4 to 64.
\left(y-8\right)^{2}=60
Factor y^{2}-16y+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-8\right)^{2}}=\sqrt{60}
Take the square root of both sides of the equation.
y-8=2\sqrt{15} y-8=-2\sqrt{15}
Simplify.
y=2\sqrt{15}+8 y=8-2\sqrt{15}
Add 8 to both sides of the equation.