Solve for y
y=2\sqrt{15}+8\approx 15.745966692
y=8-2\sqrt{15}\approx 0.254033308
Graph
Share
Copied to clipboard
y^{2}-4y+4=12y
Multiply both sides of the equation by 2.
y^{2}-4y+4-12y=0
Subtract 12y from both sides.
y^{2}-16y+4=0
Combine -4y and -12y to get -16y.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -16 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 4}}{2}
Square -16.
y=\frac{-\left(-16\right)±\sqrt{256-16}}{2}
Multiply -4 times 4.
y=\frac{-\left(-16\right)±\sqrt{240}}{2}
Add 256 to -16.
y=\frac{-\left(-16\right)±4\sqrt{15}}{2}
Take the square root of 240.
y=\frac{16±4\sqrt{15}}{2}
The opposite of -16 is 16.
y=\frac{4\sqrt{15}+16}{2}
Now solve the equation y=\frac{16±4\sqrt{15}}{2} when ± is plus. Add 16 to 4\sqrt{15}.
y=2\sqrt{15}+8
Divide 16+4\sqrt{15} by 2.
y=\frac{16-4\sqrt{15}}{2}
Now solve the equation y=\frac{16±4\sqrt{15}}{2} when ± is minus. Subtract 4\sqrt{15} from 16.
y=8-2\sqrt{15}
Divide 16-4\sqrt{15} by 2.
y=2\sqrt{15}+8 y=8-2\sqrt{15}
The equation is now solved.
y^{2}-4y+4=12y
Multiply both sides of the equation by 2.
y^{2}-4y+4-12y=0
Subtract 12y from both sides.
y^{2}-16y+4=0
Combine -4y and -12y to get -16y.
y^{2}-16y=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
y^{2}-16y+\left(-8\right)^{2}=-4+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-16y+64=-4+64
Square -8.
y^{2}-16y+64=60
Add -4 to 64.
\left(y-8\right)^{2}=60
Factor y^{2}-16y+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-8\right)^{2}}=\sqrt{60}
Take the square root of both sides of the equation.
y-8=2\sqrt{15} y-8=-2\sqrt{15}
Simplify.
y=2\sqrt{15}+8 y=8-2\sqrt{15}
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}