Evaluate
\frac{y}{y+5}
Expand
\frac{y}{y+5}
Graph
Share
Copied to clipboard
\frac{\left(y^{2}+y-12\right)\left(y^{3}+3y^{2}\right)}{\left(y^{3}+9y^{2}+20y\right)\left(y^{2}-9\right)}
Divide \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by \frac{y^{2}-9}{y^{3}+3y^{2}} by multiplying \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by the reciprocal of \frac{y^{2}-9}{y^{3}+3y^{2}}.
\frac{\left(y-3\right)\left(y+3\right)\left(y+4\right)y^{2}}{y\left(y-3\right)\left(y+3\right)\left(y+4\right)\left(y+5\right)}
Factor the expressions that are not already factored.
\frac{y}{y+5}
Cancel out y\left(y-3\right)\left(y+3\right)\left(y+4\right) in both numerator and denominator.
\frac{\left(y^{2}+y-12\right)\left(y^{3}+3y^{2}\right)}{\left(y^{3}+9y^{2}+20y\right)\left(y^{2}-9\right)}
Divide \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by \frac{y^{2}-9}{y^{3}+3y^{2}} by multiplying \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by the reciprocal of \frac{y^{2}-9}{y^{3}+3y^{2}}.
\frac{\left(y-3\right)\left(y+3\right)\left(y+4\right)y^{2}}{y\left(y-3\right)\left(y+3\right)\left(y+4\right)\left(y+5\right)}
Factor the expressions that are not already factored.
\frac{y}{y+5}
Cancel out y\left(y-3\right)\left(y+3\right)\left(y+4\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}