Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Share

\frac{\left(y^{2}+y-12\right)\left(y^{3}+3y^{2}\right)}{\left(y^{3}+9y^{2}+20y\right)\left(y^{2}-9\right)}
Divide \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by \frac{y^{2}-9}{y^{3}+3y^{2}} by multiplying \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by the reciprocal of \frac{y^{2}-9}{y^{3}+3y^{2}}.
\frac{\left(y-3\right)\left(y+3\right)\left(y+4\right)y^{2}}{y\left(y-3\right)\left(y+3\right)\left(y+4\right)\left(y+5\right)}
Factor the expressions that are not already factored.
\frac{y}{y+5}
Cancel out y\left(y-3\right)\left(y+3\right)\left(y+4\right) in both numerator and denominator.
\frac{\left(y^{2}+y-12\right)\left(y^{3}+3y^{2}\right)}{\left(y^{3}+9y^{2}+20y\right)\left(y^{2}-9\right)}
Divide \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by \frac{y^{2}-9}{y^{3}+3y^{2}} by multiplying \frac{y^{2}+y-12}{y^{3}+9y^{2}+20y} by the reciprocal of \frac{y^{2}-9}{y^{3}+3y^{2}}.
\frac{\left(y-3\right)\left(y+3\right)\left(y+4\right)y^{2}}{y\left(y-3\right)\left(y+3\right)\left(y+4\right)\left(y+5\right)}
Factor the expressions that are not already factored.
\frac{y}{y+5}
Cancel out y\left(y-3\right)\left(y+3\right)\left(y+4\right) in both numerator and denominator.