Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+8y+9=19\times 2
Multiply both sides by 2.
y^{2}+8y+9=38
Multiply 19 and 2 to get 38.
y^{2}+8y+9-38=0
Subtract 38 from both sides.
y^{2}+8y-29=0
Subtract 38 from 9 to get -29.
y=\frac{-8±\sqrt{8^{2}-4\left(-29\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 8 for b, and -29 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-8±\sqrt{64-4\left(-29\right)}}{2}
Square 8.
y=\frac{-8±\sqrt{64+116}}{2}
Multiply -4 times -29.
y=\frac{-8±\sqrt{180}}{2}
Add 64 to 116.
y=\frac{-8±6\sqrt{5}}{2}
Take the square root of 180.
y=\frac{6\sqrt{5}-8}{2}
Now solve the equation y=\frac{-8±6\sqrt{5}}{2} when ± is plus. Add -8 to 6\sqrt{5}.
y=3\sqrt{5}-4
Divide -8+6\sqrt{5} by 2.
y=\frac{-6\sqrt{5}-8}{2}
Now solve the equation y=\frac{-8±6\sqrt{5}}{2} when ± is minus. Subtract 6\sqrt{5} from -8.
y=-3\sqrt{5}-4
Divide -8-6\sqrt{5} by 2.
y=3\sqrt{5}-4 y=-3\sqrt{5}-4
The equation is now solved.
y^{2}+8y+9=19\times 2
Multiply both sides by 2.
y^{2}+8y+9=38
Multiply 19 and 2 to get 38.
y^{2}+8y=38-9
Subtract 9 from both sides.
y^{2}+8y=29
Subtract 9 from 38 to get 29.
y^{2}+8y+4^{2}=29+4^{2}
Divide 8, the coefficient of the x term, by 2 to get 4. Then add the square of 4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+8y+16=29+16
Square 4.
y^{2}+8y+16=45
Add 29 to 16.
\left(y+4\right)^{2}=45
Factor y^{2}+8y+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+4\right)^{2}}=\sqrt{45}
Take the square root of both sides of the equation.
y+4=3\sqrt{5} y+4=-3\sqrt{5}
Simplify.
y=3\sqrt{5}-4 y=-3\sqrt{5}-4
Subtract 4 from both sides of the equation.