Solve for y
y=5
Graph
Share
Copied to clipboard
y^{2}+17=\left(y-1\right)\left(y-2\right)-\left(-\left(1+y\right)\times 5\right)
Variable y cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(y-1\right)\left(y+1\right), the least common multiple of y^{2}-1,y+1,1-y.
y^{2}+17=y^{2}-3y+2-\left(-\left(1+y\right)\times 5\right)
Use the distributive property to multiply y-1 by y-2 and combine like terms.
y^{2}+17=y^{2}-3y+2-\left(-5\left(1+y\right)\right)
Multiply -1 and 5 to get -5.
y^{2}+17=y^{2}-3y+2-\left(-5-5y\right)
Use the distributive property to multiply -5 by 1+y.
y^{2}+17=y^{2}-3y+2+5+5y
To find the opposite of -5-5y, find the opposite of each term.
y^{2}+17=y^{2}-3y+7+5y
Add 2 and 5 to get 7.
y^{2}+17=y^{2}+2y+7
Combine -3y and 5y to get 2y.
y^{2}+17-y^{2}=2y+7
Subtract y^{2} from both sides.
17=2y+7
Combine y^{2} and -y^{2} to get 0.
2y+7=17
Swap sides so that all variable terms are on the left hand side.
2y=17-7
Subtract 7 from both sides.
2y=10
Subtract 7 from 17 to get 10.
y=\frac{10}{2}
Divide both sides by 2.
y=5
Divide 10 by 2 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}