Solve for k
k=-\frac{x+y}{x-y}
y\neq x
Solve for x
\left\{\begin{matrix}x=-\frac{y\left(1-k\right)}{k+1}\text{, }&y\neq 0\text{ and }k\neq -1\\x\neq 0\text{, }&y=0\text{ and }k=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
y+x=\left(-x+y\right)k
Multiply both sides of the equation by -x+y.
y+x=-xk+yk
Use the distributive property to multiply -x+y by k.
-xk+yk=y+x
Swap sides so that all variable terms are on the left hand side.
\left(-x+y\right)k=y+x
Combine all terms containing k.
\left(y-x\right)k=x+y
The equation is in standard form.
\frac{\left(y-x\right)k}{y-x}=\frac{x+y}{y-x}
Divide both sides by y-x.
k=\frac{x+y}{y-x}
Dividing by y-x undoes the multiplication by y-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}