Solve for x
x=-\frac{y+7}{3-y}
y\neq 3
Solve for y
y=-\frac{3x+7}{1-x}
x\neq 1
Graph
Share
Copied to clipboard
y+7=x\left(y-3\right)
Multiply both sides of the equation by y-3.
y+7=xy-3x
Use the distributive property to multiply x by y-3.
xy-3x=y+7
Swap sides so that all variable terms are on the left hand side.
\left(y-3\right)x=y+7
Combine all terms containing x.
\frac{\left(y-3\right)x}{y-3}=\frac{y+7}{y-3}
Divide both sides by y-3.
x=\frac{y+7}{y-3}
Dividing by y-3 undoes the multiplication by y-3.
y+7=x\left(y-3\right)
Variable y cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by y-3.
y+7=xy-3x
Use the distributive property to multiply x by y-3.
y+7-xy=-3x
Subtract xy from both sides.
y-xy=-3x-7
Subtract 7 from both sides.
\left(1-x\right)y=-3x-7
Combine all terms containing y.
\frac{\left(1-x\right)y}{1-x}=\frac{-3x-7}{1-x}
Divide both sides by 1-x.
y=\frac{-3x-7}{1-x}
Dividing by 1-x undoes the multiplication by 1-x.
y=-\frac{3x+7}{1-x}
Divide -3x-7 by 1-x.
y=-\frac{3x+7}{1-x}\text{, }y\neq 3
Variable y cannot be equal to 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}