Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y+4}{y-7}+\frac{\left(y+2\right)\left(y+4\right)}{\left(y-7\right)\left(y+2\right)}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Factor the expressions that are not already factored in \frac{y^{2}+6y+8}{y^{2}-5y-14}.
\frac{y+4}{y-7}+\frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Cancel out y+2 in both numerator and denominator.
2\times \frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Combine \frac{y+4}{y-7} and \frac{y+4}{y-7} to get 2\times \frac{y+4}{y-7}.
2\times \frac{y+4}{y-7}-\frac{\left(y-7\right)\left(y+4\right)}{\left(y-7\right)^{2}}
Factor the expressions that are not already factored in \frac{y^{2}-3y-28}{y^{2}-14y+49}.
2\times \frac{y+4}{y-7}-\frac{y+4}{y-7}
Cancel out y-7 in both numerator and denominator.
\frac{2\left(y+4\right)}{y-7}-\frac{y+4}{y-7}
Express 2\times \frac{y+4}{y-7} as a single fraction.
\frac{2\left(y+4\right)-\left(y+4\right)}{y-7}
Since \frac{2\left(y+4\right)}{y-7} and \frac{y+4}{y-7} have the same denominator, subtract them by subtracting their numerators.
\frac{2y+8-y-4}{y-7}
Do the multiplications in 2\left(y+4\right)-\left(y+4\right).
\frac{y+4}{y-7}
Combine like terms in 2y+8-y-4.
\frac{y+4}{y-7}+\frac{\left(y+2\right)\left(y+4\right)}{\left(y-7\right)\left(y+2\right)}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Factor the expressions that are not already factored in \frac{y^{2}+6y+8}{y^{2}-5y-14}.
\frac{y+4}{y-7}+\frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Cancel out y+2 in both numerator and denominator.
2\times \frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Combine \frac{y+4}{y-7} and \frac{y+4}{y-7} to get 2\times \frac{y+4}{y-7}.
2\times \frac{y+4}{y-7}-\frac{\left(y-7\right)\left(y+4\right)}{\left(y-7\right)^{2}}
Factor the expressions that are not already factored in \frac{y^{2}-3y-28}{y^{2}-14y+49}.
2\times \frac{y+4}{y-7}-\frac{y+4}{y-7}
Cancel out y-7 in both numerator and denominator.
\frac{2\left(y+4\right)}{y-7}-\frac{y+4}{y-7}
Express 2\times \frac{y+4}{y-7} as a single fraction.
\frac{2\left(y+4\right)-\left(y+4\right)}{y-7}
Since \frac{2\left(y+4\right)}{y-7} and \frac{y+4}{y-7} have the same denominator, subtract them by subtracting their numerators.
\frac{2y+8-y-4}{y-7}
Do the multiplications in 2\left(y+4\right)-\left(y+4\right).
\frac{y+4}{y-7}
Combine like terms in 2y+8-y-4.