Evaluate
\frac{y+4}{y-7}
Expand
\frac{y+4}{y-7}
Graph
Share
Copied to clipboard
\frac{y+4}{y-7}+\frac{\left(y+2\right)\left(y+4\right)}{\left(y-7\right)\left(y+2\right)}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Factor the expressions that are not already factored in \frac{y^{2}+6y+8}{y^{2}-5y-14}.
\frac{y+4}{y-7}+\frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Cancel out y+2 in both numerator and denominator.
2\times \frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Combine \frac{y+4}{y-7} and \frac{y+4}{y-7} to get 2\times \frac{y+4}{y-7}.
2\times \frac{y+4}{y-7}-\frac{\left(y-7\right)\left(y+4\right)}{\left(y-7\right)^{2}}
Factor the expressions that are not already factored in \frac{y^{2}-3y-28}{y^{2}-14y+49}.
2\times \frac{y+4}{y-7}-\frac{y+4}{y-7}
Cancel out y-7 in both numerator and denominator.
\frac{2\left(y+4\right)}{y-7}-\frac{y+4}{y-7}
Express 2\times \frac{y+4}{y-7} as a single fraction.
\frac{2\left(y+4\right)-\left(y+4\right)}{y-7}
Since \frac{2\left(y+4\right)}{y-7} and \frac{y+4}{y-7} have the same denominator, subtract them by subtracting their numerators.
\frac{2y+8-y-4}{y-7}
Do the multiplications in 2\left(y+4\right)-\left(y+4\right).
\frac{y+4}{y-7}
Combine like terms in 2y+8-y-4.
\frac{y+4}{y-7}+\frac{\left(y+2\right)\left(y+4\right)}{\left(y-7\right)\left(y+2\right)}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Factor the expressions that are not already factored in \frac{y^{2}+6y+8}{y^{2}-5y-14}.
\frac{y+4}{y-7}+\frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Cancel out y+2 in both numerator and denominator.
2\times \frac{y+4}{y-7}-\frac{y^{2}-3y-28}{y^{2}-14y+49}
Combine \frac{y+4}{y-7} and \frac{y+4}{y-7} to get 2\times \frac{y+4}{y-7}.
2\times \frac{y+4}{y-7}-\frac{\left(y-7\right)\left(y+4\right)}{\left(y-7\right)^{2}}
Factor the expressions that are not already factored in \frac{y^{2}-3y-28}{y^{2}-14y+49}.
2\times \frac{y+4}{y-7}-\frac{y+4}{y-7}
Cancel out y-7 in both numerator and denominator.
\frac{2\left(y+4\right)}{y-7}-\frac{y+4}{y-7}
Express 2\times \frac{y+4}{y-7} as a single fraction.
\frac{2\left(y+4\right)-\left(y+4\right)}{y-7}
Since \frac{2\left(y+4\right)}{y-7} and \frac{y+4}{y-7} have the same denominator, subtract them by subtracting their numerators.
\frac{2y+8-y-4}{y-7}
Do the multiplications in 2\left(y+4\right)-\left(y+4\right).
\frac{y+4}{y-7}
Combine like terms in 2y+8-y-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}