Evaluate
\frac{y-12}{y-8}
Expand
\frac{y-12}{y-8}
Graph
Share
Copied to clipboard
\frac{y+4}{\left(y+4\right)\left(y+12\right)}\times \frac{y^{2}-144}{y-8}
Factor the expressions that are not already factored in \frac{y+4}{y^{2}+16y+48}.
\frac{1}{y+12}\times \frac{y^{2}-144}{y-8}
Cancel out y+4 in both numerator and denominator.
\frac{y^{2}-144}{\left(y+12\right)\left(y-8\right)}
Multiply \frac{1}{y+12} times \frac{y^{2}-144}{y-8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y-12\right)\left(y+12\right)}{\left(y-8\right)\left(y+12\right)}
Factor the expressions that are not already factored.
\frac{y-12}{y-8}
Cancel out y+12 in both numerator and denominator.
\frac{y+4}{\left(y+4\right)\left(y+12\right)}\times \frac{y^{2}-144}{y-8}
Factor the expressions that are not already factored in \frac{y+4}{y^{2}+16y+48}.
\frac{1}{y+12}\times \frac{y^{2}-144}{y-8}
Cancel out y+4 in both numerator and denominator.
\frac{y^{2}-144}{\left(y+12\right)\left(y-8\right)}
Multiply \frac{1}{y+12} times \frac{y^{2}-144}{y-8} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(y-12\right)\left(y+12\right)}{\left(y-8\right)\left(y+12\right)}
Factor the expressions that are not already factored.
\frac{y-12}{y-8}
Cancel out y+12 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}