Evaluate
\frac{8}{y+2}
Expand
\frac{8}{y+2}
Graph
Share
Copied to clipboard
\frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-2 and y+2 is \left(y-2\right)\left(y+2\right). Multiply \frac{y+2}{y-2} times \frac{y+2}{y+2}. Multiply \frac{y-2}{y+2} times \frac{y-2}{y-2}.
\frac{\left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Since \frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)} and \frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+2y+2y+4-y^{2}+2y+2y-4}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Do the multiplications in \left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right).
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Combine like terms in y^{2}+2y+2y+4-y^{2}+2y+2y-4.
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{\left(y-2\right)\left(y+2\right)}
Factor y^{2}-4.
\frac{8y-16}{\left(y-2\right)\left(y+2\right)}
Since \frac{8y}{\left(y-2\right)\left(y+2\right)} and \frac{16}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}
Factor the expressions that are not already factored in \frac{8y-16}{\left(y-2\right)\left(y+2\right)}.
\frac{8}{y+2}
Cancel out y-2 in both numerator and denominator.
\frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-2 and y+2 is \left(y-2\right)\left(y+2\right). Multiply \frac{y+2}{y-2} times \frac{y+2}{y+2}. Multiply \frac{y-2}{y+2} times \frac{y-2}{y-2}.
\frac{\left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Since \frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)} and \frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+2y+2y+4-y^{2}+2y+2y-4}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Do the multiplications in \left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right).
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Combine like terms in y^{2}+2y+2y+4-y^{2}+2y+2y-4.
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{\left(y-2\right)\left(y+2\right)}
Factor y^{2}-4.
\frac{8y-16}{\left(y-2\right)\left(y+2\right)}
Since \frac{8y}{\left(y-2\right)\left(y+2\right)} and \frac{16}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}
Factor the expressions that are not already factored in \frac{8y-16}{\left(y-2\right)\left(y+2\right)}.
\frac{8}{y+2}
Cancel out y-2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}