Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-2 and y+2 is \left(y-2\right)\left(y+2\right). Multiply \frac{y+2}{y-2} times \frac{y+2}{y+2}. Multiply \frac{y-2}{y+2} times \frac{y-2}{y-2}.
\frac{\left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Since \frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)} and \frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+2y+2y+4-y^{2}+2y+2y-4}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Do the multiplications in \left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right).
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Combine like terms in y^{2}+2y+2y+4-y^{2}+2y+2y-4.
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{\left(y-2\right)\left(y+2\right)}
Factor y^{2}-4.
\frac{8y-16}{\left(y-2\right)\left(y+2\right)}
Since \frac{8y}{\left(y-2\right)\left(y+2\right)} and \frac{16}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}
Factor the expressions that are not already factored in \frac{8y-16}{\left(y-2\right)\left(y+2\right)}.
\frac{8}{y+2}
Cancel out y-2 in both numerator and denominator.
\frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-2 and y+2 is \left(y-2\right)\left(y+2\right). Multiply \frac{y+2}{y-2} times \frac{y+2}{y+2}. Multiply \frac{y-2}{y+2} times \frac{y-2}{y-2}.
\frac{\left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Since \frac{\left(y+2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)} and \frac{\left(y-2\right)\left(y-2\right)}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+2y+2y+4-y^{2}+2y+2y-4}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Do the multiplications in \left(y+2\right)\left(y+2\right)-\left(y-2\right)\left(y-2\right).
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{y^{2}-4}
Combine like terms in y^{2}+2y+2y+4-y^{2}+2y+2y-4.
\frac{8y}{\left(y-2\right)\left(y+2\right)}-\frac{16}{\left(y-2\right)\left(y+2\right)}
Factor y^{2}-4.
\frac{8y-16}{\left(y-2\right)\left(y+2\right)}
Since \frac{8y}{\left(y-2\right)\left(y+2\right)} and \frac{16}{\left(y-2\right)\left(y+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8\left(y-2\right)}{\left(y-2\right)\left(y+2\right)}
Factor the expressions that are not already factored in \frac{8y-16}{\left(y-2\right)\left(y+2\right)}.
\frac{8}{y+2}
Cancel out y-2 in both numerator and denominator.