Solve for x
x=-\frac{3y}{4}+\frac{7}{2}
Solve for y
y=\frac{14-4x}{3}
Graph
Share
Copied to clipboard
3\left(y+2\right)+4\left(x-5\right)=0
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3y+6+4\left(x-5\right)=0
Use the distributive property to multiply 3 by y+2.
3y+6+4x-20=0
Use the distributive property to multiply 4 by x-5.
3y-14+4x=0
Subtract 20 from 6 to get -14.
-14+4x=-3y
Subtract 3y from both sides. Anything subtracted from zero gives its negation.
4x=-3y+14
Add 14 to both sides.
4x=14-3y
The equation is in standard form.
\frac{4x}{4}=\frac{14-3y}{4}
Divide both sides by 4.
x=\frac{14-3y}{4}
Dividing by 4 undoes the multiplication by 4.
x=-\frac{3y}{4}+\frac{7}{2}
Divide -3y+14 by 4.
3\left(y+2\right)+4\left(x-5\right)=0
Multiply both sides of the equation by 12, the least common multiple of 4,3.
3y+6+4\left(x-5\right)=0
Use the distributive property to multiply 3 by y+2.
3y+6+4x-20=0
Use the distributive property to multiply 4 by x-5.
3y-14+4x=0
Subtract 20 from 6 to get -14.
3y+4x=14
Add 14 to both sides. Anything plus zero gives itself.
3y=14-4x
Subtract 4x from both sides.
\frac{3y}{3}=\frac{14-4x}{3}
Divide both sides by 3.
y=\frac{14-4x}{3}
Dividing by 3 undoes the multiplication by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}