Solve for y
y = \frac{23}{10} = 2\frac{3}{10} = 2.3
Graph
Share
Copied to clipboard
3\left(y+1\right)+2\left(3y-6\right)-\left(8-y\right)=6
Multiply both sides of the equation by 6, the least common multiple of 2,3,6.
3y+3+2\left(3y-6\right)-\left(8-y\right)=6
Use the distributive property to multiply 3 by y+1.
3y+3+6y-12-\left(8-y\right)=6
Use the distributive property to multiply 2 by 3y-6.
9y+3-12-\left(8-y\right)=6
Combine 3y and 6y to get 9y.
9y-9-\left(8-y\right)=6
Subtract 12 from 3 to get -9.
9y-9-8-\left(-y\right)=6
To find the opposite of 8-y, find the opposite of each term.
9y-9-8+y=6
The opposite of -y is y.
9y-17+y=6
Subtract 8 from -9 to get -17.
10y-17=6
Combine 9y and y to get 10y.
10y=6+17
Add 17 to both sides.
10y=23
Add 6 and 17 to get 23.
y=\frac{23}{10}
Divide both sides by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}