Solve for x
x=\frac{4-6y}{7}
y\neq -\frac{6}{19}
Solve for y
y=-\frac{7x}{6}+\frac{2}{3}
x\neq \frac{16}{19}
Graph
Share
Copied to clipboard
\frac{\frac{1}{19}\left(19y+6\right)}{\frac{1}{19}\left(19x-16\right)}=\frac{\frac{3}{8}+\frac{6}{19}}{\frac{1}{4}-\frac{16}{19}}
Factor the expressions that are not already factored in \frac{y+\frac{6}{19}}{x-\frac{16}{19}}.
\frac{19y+6}{\left(\frac{1}{19}\right)^{0}\left(19x-16\right)}=\frac{\frac{3}{8}+\frac{6}{19}}{\frac{1}{4}-\frac{16}{19}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{19y+6}{1\left(19x-16\right)}=\frac{\frac{3}{8}+\frac{6}{19}}{\frac{1}{4}-\frac{16}{19}}
Calculate \frac{1}{19} to the power of 0 and get 1.
\frac{19y+6}{1\left(19x-16\right)}=\frac{\frac{105}{152}}{\frac{1}{4}-\frac{16}{19}}
Add \frac{3}{8} and \frac{6}{19} to get \frac{105}{152}.
\frac{19y+6}{1\left(19x-16\right)}=\frac{\frac{105}{152}}{-\frac{45}{76}}
Subtract \frac{16}{19} from \frac{1}{4} to get -\frac{45}{76}.
\frac{19y+6}{1\left(19x-16\right)}=\frac{105}{152}\left(-\frac{76}{45}\right)
Divide \frac{105}{152} by -\frac{45}{76} by multiplying \frac{105}{152} by the reciprocal of -\frac{45}{76}.
\frac{19y+6}{1\left(19x-16\right)}=-\frac{7}{6}
Multiply \frac{105}{152} and -\frac{76}{45} to get -\frac{7}{6}.
\frac{19y+6}{19x-16}=-\frac{7}{6}
Use the distributive property to multiply 1 by 19x-16.
6\left(19y+6\right)=-7\left(19x-16\right)
Variable x cannot be equal to \frac{16}{19} since division by zero is not defined. Multiply both sides of the equation by 6\left(19x-16\right), the least common multiple of 19x-16,6.
114y+36=-7\left(19x-16\right)
Use the distributive property to multiply 6 by 19y+6.
114y+36=-133x+112
Use the distributive property to multiply -7 by 19x-16.
-133x+112=114y+36
Swap sides so that all variable terms are on the left hand side.
-133x=114y+36-112
Subtract 112 from both sides.
-133x=114y-76
Subtract 112 from 36 to get -76.
\frac{-133x}{-133}=\frac{114y-76}{-133}
Divide both sides by -133.
x=\frac{114y-76}{-133}
Dividing by -133 undoes the multiplication by -133.
x=\frac{4-6y}{7}
Divide 114y-76 by -133.
x=\frac{4-6y}{7}\text{, }x\neq \frac{16}{19}
Variable x cannot be equal to \frac{16}{19}.
\frac{\frac{1}{19}\left(19y+6\right)}{\frac{1}{19}\left(19x-16\right)}=\frac{\frac{3}{8}+\frac{6}{19}}{\frac{1}{4}-\frac{16}{19}}
Factor the expressions that are not already factored in \frac{y+\frac{6}{19}}{x-\frac{16}{19}}.
\frac{19y+6}{\left(\frac{1}{19}\right)^{0}\left(19x-16\right)}=\frac{\frac{3}{8}+\frac{6}{19}}{\frac{1}{4}-\frac{16}{19}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{19y+6}{1\left(19x-16\right)}=\frac{\frac{3}{8}+\frac{6}{19}}{\frac{1}{4}-\frac{16}{19}}
Calculate \frac{1}{19} to the power of 0 and get 1.
\frac{19y+6}{1\left(19x-16\right)}=\frac{\frac{105}{152}}{\frac{1}{4}-\frac{16}{19}}
Add \frac{3}{8} and \frac{6}{19} to get \frac{105}{152}.
\frac{19y+6}{1\left(19x-16\right)}=\frac{\frac{105}{152}}{-\frac{45}{76}}
Subtract \frac{16}{19} from \frac{1}{4} to get -\frac{45}{76}.
\frac{19y+6}{1\left(19x-16\right)}=\frac{105}{152}\left(-\frac{76}{45}\right)
Divide \frac{105}{152} by -\frac{45}{76} by multiplying \frac{105}{152} by the reciprocal of -\frac{45}{76}.
\frac{19y+6}{1\left(19x-16\right)}=-\frac{7}{6}
Multiply \frac{105}{152} and -\frac{76}{45} to get -\frac{7}{6}.
\frac{19y+6}{19x-16}=-\frac{7}{6}
Use the distributive property to multiply 1 by 19x-16.
6\left(19y+6\right)=-7\left(19x-16\right)
Multiply both sides of the equation by 6\left(19x-16\right), the least common multiple of 19x-16,6.
114y+36=-7\left(19x-16\right)
Use the distributive property to multiply 6 by 19y+6.
114y+36=-133x+112
Use the distributive property to multiply -7 by 19x-16.
114y=-133x+112-36
Subtract 36 from both sides.
114y=-133x+76
Subtract 36 from 112 to get 76.
114y=76-133x
The equation is in standard form.
\frac{114y}{114}=\frac{76-133x}{114}
Divide both sides by 114.
y=\frac{76-133x}{114}
Dividing by 114 undoes the multiplication by 114.
y=-\frac{7x}{6}+\frac{2}{3}
Divide -133x+76 by 114.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}