Solve for x
x=\frac{4y-2}{5}
Solve for y
y=\frac{5x}{4}+\frac{1}{2}
Graph
Share
Copied to clipboard
\frac{y+\frac{1}{3}}{\frac{10}{3}}=\frac{x+\frac{2}{3}}{2+\frac{2}{3}}
Add 3 and \frac{1}{3} to get \frac{10}{3}.
\frac{y+\frac{1}{3}}{\frac{10}{3}}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Add 2 and \frac{2}{3} to get \frac{8}{3}.
\frac{y}{\frac{10}{3}}+\frac{\frac{1}{3}}{\frac{10}{3}}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Divide each term of y+\frac{1}{3} by \frac{10}{3} to get \frac{y}{\frac{10}{3}}+\frac{\frac{1}{3}}{\frac{10}{3}}.
\frac{y}{\frac{10}{3}}+\frac{1}{3}\times \frac{3}{10}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Divide \frac{1}{3} by \frac{10}{3} by multiplying \frac{1}{3} by the reciprocal of \frac{10}{3}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Multiply \frac{1}{3} and \frac{3}{10} to get \frac{1}{10}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x}{\frac{8}{3}}+\frac{\frac{2}{3}}{\frac{8}{3}}
Divide each term of x+\frac{2}{3} by \frac{8}{3} to get \frac{x}{\frac{8}{3}}+\frac{\frac{2}{3}}{\frac{8}{3}}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x}{\frac{8}{3}}+\frac{2}{3}\times \frac{3}{8}
Divide \frac{2}{3} by \frac{8}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{8}{3}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x}{\frac{8}{3}}+\frac{1}{4}
Multiply \frac{2}{3} and \frac{3}{8} to get \frac{1}{4}.
\frac{x}{\frac{8}{3}}+\frac{1}{4}=\frac{y}{\frac{10}{3}}+\frac{1}{10}
Swap sides so that all variable terms are on the left hand side.
\frac{x}{\frac{8}{3}}=\frac{y}{\frac{10}{3}}+\frac{1}{10}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
\frac{x}{\frac{8}{3}}=\frac{y}{\frac{10}{3}}-\frac{3}{20}
Subtract \frac{1}{4} from \frac{1}{10} to get -\frac{3}{20}.
\frac{3}{8}x=\frac{3y}{10}-\frac{3}{20}
The equation is in standard form.
\frac{\frac{3}{8}x}{\frac{3}{8}}=\frac{\frac{3y}{10}-\frac{3}{20}}{\frac{3}{8}}
Divide both sides of the equation by \frac{3}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{3y}{10}-\frac{3}{20}}{\frac{3}{8}}
Dividing by \frac{3}{8} undoes the multiplication by \frac{3}{8}.
x=\frac{4y-2}{5}
Divide \frac{3y}{10}-\frac{3}{20} by \frac{3}{8} by multiplying \frac{3y}{10}-\frac{3}{20} by the reciprocal of \frac{3}{8}.
\frac{y+\frac{1}{3}}{\frac{10}{3}}=\frac{x+\frac{2}{3}}{2+\frac{2}{3}}
Add 3 and \frac{1}{3} to get \frac{10}{3}.
\frac{y+\frac{1}{3}}{\frac{10}{3}}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Add 2 and \frac{2}{3} to get \frac{8}{3}.
\frac{y}{\frac{10}{3}}+\frac{\frac{1}{3}}{\frac{10}{3}}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Divide each term of y+\frac{1}{3} by \frac{10}{3} to get \frac{y}{\frac{10}{3}}+\frac{\frac{1}{3}}{\frac{10}{3}}.
\frac{y}{\frac{10}{3}}+\frac{1}{3}\times \frac{3}{10}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Divide \frac{1}{3} by \frac{10}{3} by multiplying \frac{1}{3} by the reciprocal of \frac{10}{3}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x+\frac{2}{3}}{\frac{8}{3}}
Multiply \frac{1}{3} and \frac{3}{10} to get \frac{1}{10}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x}{\frac{8}{3}}+\frac{\frac{2}{3}}{\frac{8}{3}}
Divide each term of x+\frac{2}{3} by \frac{8}{3} to get \frac{x}{\frac{8}{3}}+\frac{\frac{2}{3}}{\frac{8}{3}}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x}{\frac{8}{3}}+\frac{2}{3}\times \frac{3}{8}
Divide \frac{2}{3} by \frac{8}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{8}{3}.
\frac{y}{\frac{10}{3}}+\frac{1}{10}=\frac{x}{\frac{8}{3}}+\frac{1}{4}
Multiply \frac{2}{3} and \frac{3}{8} to get \frac{1}{4}.
\frac{y}{\frac{10}{3}}=\frac{x}{\frac{8}{3}}+\frac{1}{4}-\frac{1}{10}
Subtract \frac{1}{10} from both sides.
\frac{y}{\frac{10}{3}}=\frac{x}{\frac{8}{3}}+\frac{3}{20}
Subtract \frac{1}{10} from \frac{1}{4} to get \frac{3}{20}.
\frac{3}{10}y=\frac{3x}{8}+\frac{3}{20}
The equation is in standard form.
\frac{\frac{3}{10}y}{\frac{3}{10}}=\frac{\frac{3x}{8}+\frac{3}{20}}{\frac{3}{10}}
Divide both sides of the equation by \frac{3}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{\frac{3x}{8}+\frac{3}{20}}{\frac{3}{10}}
Dividing by \frac{3}{10} undoes the multiplication by \frac{3}{10}.
y=\frac{5x}{4}+\frac{1}{2}
Divide \frac{3x}{8}+\frac{3}{20} by \frac{3}{10} by multiplying \frac{3x}{8}+\frac{3}{20} by the reciprocal of \frac{3}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}