Solve for x
x=2-\frac{1}{z}
z\neq 0\text{ and }z\neq 1
Solve for z
z=-\frac{1}{x-2}
x\neq 1\text{ and }x\neq 2
Share
Copied to clipboard
xz=1+\left(z-1\right)\times 2
Multiply both sides of the equation by z-1.
xz=1+2z-2
Use the distributive property to multiply z-1 by 2.
xz=-1+2z
Subtract 2 from 1 to get -1.
zx=2z-1
The equation is in standard form.
\frac{zx}{z}=\frac{2z-1}{z}
Divide both sides by z.
x=\frac{2z-1}{z}
Dividing by z undoes the multiplication by z.
x=2-\frac{1}{z}
Divide -1+2z by z.
xz=1+\left(z-1\right)\times 2
Variable z cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by z-1.
xz=1+2z-2
Use the distributive property to multiply z-1 by 2.
xz=-1+2z
Subtract 2 from 1 to get -1.
xz-2z=-1
Subtract 2z from both sides.
\left(x-2\right)z=-1
Combine all terms containing z.
\frac{\left(x-2\right)z}{x-2}=-\frac{1}{x-2}
Divide both sides by x-2.
z=-\frac{1}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
z=-\frac{1}{x-2}\text{, }z\neq 1
Variable z cannot be equal to 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}