Evaluate
y-x
Expand
y-x
Share
Copied to clipboard
\frac{\left(xy-y\right)y}{xy}-\frac{\left(xy-x\right)x}{xy}-\frac{x^{2}-y^{2}}{xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{xy-y}{x} times \frac{y}{y}. Multiply \frac{xy-x}{y} times \frac{x}{x}.
\frac{\left(xy-y\right)y-\left(xy-x\right)x}{xy}-\frac{x^{2}-y^{2}}{xy}
Since \frac{\left(xy-y\right)y}{xy} and \frac{\left(xy-x\right)x}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{xy^{2}-y^{2}-x^{2}y+x^{2}}{xy}-\frac{x^{2}-y^{2}}{xy}
Do the multiplications in \left(xy-y\right)y-\left(xy-x\right)x.
\frac{xy^{2}-y^{2}-x^{2}y+x^{2}-\left(x^{2}-y^{2}\right)}{xy}
Since \frac{xy^{2}-y^{2}-x^{2}y+x^{2}}{xy} and \frac{x^{2}-y^{2}}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{xy^{2}-y^{2}-x^{2}y+x^{2}-x^{2}+y^{2}}{xy}
Do the multiplications in xy^{2}-y^{2}-x^{2}y+x^{2}-\left(x^{2}-y^{2}\right).
\frac{-x^{2}y+xy^{2}}{xy}
Combine like terms in xy^{2}-y^{2}-x^{2}y+x^{2}-x^{2}+y^{2}.
\frac{xy\left(-x+y\right)}{xy}
Factor the expressions that are not already factored in \frac{-x^{2}y+xy^{2}}{xy}.
-x+y
Cancel out xy in both numerator and denominator.
\frac{\left(xy-y\right)y}{xy}-\frac{\left(xy-x\right)x}{xy}-\frac{x^{2}-y^{2}}{xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and y is xy. Multiply \frac{xy-y}{x} times \frac{y}{y}. Multiply \frac{xy-x}{y} times \frac{x}{x}.
\frac{\left(xy-y\right)y-\left(xy-x\right)x}{xy}-\frac{x^{2}-y^{2}}{xy}
Since \frac{\left(xy-y\right)y}{xy} and \frac{\left(xy-x\right)x}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{xy^{2}-y^{2}-x^{2}y+x^{2}}{xy}-\frac{x^{2}-y^{2}}{xy}
Do the multiplications in \left(xy-y\right)y-\left(xy-x\right)x.
\frac{xy^{2}-y^{2}-x^{2}y+x^{2}-\left(x^{2}-y^{2}\right)}{xy}
Since \frac{xy^{2}-y^{2}-x^{2}y+x^{2}}{xy} and \frac{x^{2}-y^{2}}{xy} have the same denominator, subtract them by subtracting their numerators.
\frac{xy^{2}-y^{2}-x^{2}y+x^{2}-x^{2}+y^{2}}{xy}
Do the multiplications in xy^{2}-y^{2}-x^{2}y+x^{2}-\left(x^{2}-y^{2}\right).
\frac{-x^{2}y+xy^{2}}{xy}
Combine like terms in xy^{2}-y^{2}-x^{2}y+x^{2}-x^{2}+y^{2}.
\frac{xy\left(-x+y\right)}{xy}
Factor the expressions that are not already factored in \frac{-x^{2}y+xy^{2}}{xy}.
-x+y
Cancel out xy in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}