Solve for x
x=\frac{61}{3\left(y-4\right)}
y\neq 4
Solve for y
y=4+\frac{61}{3x}
x\neq 0
Graph
Share
Copied to clipboard
3\left(xy-1\right)-2\left(6x-1\right)=60
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3xy-3-2\left(6x-1\right)=60
Use the distributive property to multiply 3 by xy-1.
3xy-3-12x+2=60
Use the distributive property to multiply -2 by 6x-1.
3xy-1-12x=60
Add -3 and 2 to get -1.
3xy-12x=60+1
Add 1 to both sides.
3xy-12x=61
Add 60 and 1 to get 61.
\left(3y-12\right)x=61
Combine all terms containing x.
\frac{\left(3y-12\right)x}{3y-12}=\frac{61}{3y-12}
Divide both sides by 3y-12.
x=\frac{61}{3y-12}
Dividing by 3y-12 undoes the multiplication by 3y-12.
x=\frac{61}{3\left(y-4\right)}
Divide 61 by 3y-12.
3\left(xy-1\right)-2\left(6x-1\right)=60
Multiply both sides of the equation by 6, the least common multiple of 2,3.
3xy-3-2\left(6x-1\right)=60
Use the distributive property to multiply 3 by xy-1.
3xy-3-12x+2=60
Use the distributive property to multiply -2 by 6x-1.
3xy-1-12x=60
Add -3 and 2 to get -1.
3xy-12x=60+1
Add 1 to both sides.
3xy-12x=61
Add 60 and 1 to get 61.
3xy=61+12x
Add 12x to both sides.
3xy=12x+61
The equation is in standard form.
\frac{3xy}{3x}=\frac{12x+61}{3x}
Divide both sides by 3x.
y=\frac{12x+61}{3x}
Dividing by 3x undoes the multiplication by 3x.
y=4+\frac{61}{3x}
Divide 61+12x by 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}