Evaluate
\frac{x}{2}
Differentiate w.r.t. x
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y}{\left(x+y\right)\left(x-y\right)}-\frac{x-y}{\left(x+y\right)\left(x-y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{1}{x-y} times \frac{x+y}{x+y}. Multiply \frac{1}{x+y} times \frac{x-y}{x-y}.
\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}
Since \frac{x+y}{\left(x+y\right)\left(x-y\right)} and \frac{x-y}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-x+y}{\left(x+y\right)\left(x-y\right)}}
Do the multiplications in x+y-\left(x-y\right).
\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{2y}{\left(x+y\right)\left(x-y\right)}}
Combine like terms in x+y-x+y.
\frac{xy\left(x+y\right)\left(x-y\right)}{\left(x^{2}-y^{2}\right)\times 2y}
Divide \frac{xy}{x^{2}-y^{2}} by \frac{2y}{\left(x+y\right)\left(x-y\right)} by multiplying \frac{xy}{x^{2}-y^{2}} by the reciprocal of \frac{2y}{\left(x+y\right)\left(x-y\right)}.
\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x^{2}-y^{2}\right)}
Cancel out y in both numerator and denominator.
\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x+y\right)\left(x-y\right)}
Factor the expressions that are not already factored.
\frac{x}{2}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y}{\left(x+y\right)\left(x-y\right)}-\frac{x-y}{\left(x+y\right)\left(x-y\right)}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{1}{x-y} times \frac{x+y}{x+y}. Multiply \frac{1}{x+y} times \frac{x-y}{x-y}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}})
Since \frac{x+y}{\left(x+y\right)\left(x-y\right)} and \frac{x-y}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-x+y}{\left(x+y\right)\left(x-y\right)}})
Do the multiplications in x+y-\left(x-y\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{2y}{\left(x+y\right)\left(x-y\right)}})
Combine like terms in x+y-x+y.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xy\left(x+y\right)\left(x-y\right)}{\left(x^{2}-y^{2}\right)\times 2y})
Divide \frac{xy}{x^{2}-y^{2}} by \frac{2y}{\left(x+y\right)\left(x-y\right)} by multiplying \frac{xy}{x^{2}-y^{2}} by the reciprocal of \frac{2y}{\left(x+y\right)\left(x-y\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x^{2}-y^{2}\right)})
Cancel out y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x+y\right)\left(x-y\right)})
Factor the expressions that are not already factored in \frac{x\left(x+y\right)\left(x-y\right)}{2\left(x^{2}-y^{2}\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{2})
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{1}{2}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{2}x^{0}
Subtract 1 from 1.
\frac{1}{2}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{2}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}