Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y}{\left(x+y\right)\left(x-y\right)}-\frac{x-y}{\left(x+y\right)\left(x-y\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{1}{x-y} times \frac{x+y}{x+y}. Multiply \frac{1}{x+y} times \frac{x-y}{x-y}.
\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}}
Since \frac{x+y}{\left(x+y\right)\left(x-y\right)} and \frac{x-y}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-x+y}{\left(x+y\right)\left(x-y\right)}}
Do the multiplications in x+y-\left(x-y\right).
\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{2y}{\left(x+y\right)\left(x-y\right)}}
Combine like terms in x+y-x+y.
\frac{xy\left(x+y\right)\left(x-y\right)}{\left(x^{2}-y^{2}\right)\times 2y}
Divide \frac{xy}{x^{2}-y^{2}} by \frac{2y}{\left(x+y\right)\left(x-y\right)} by multiplying \frac{xy}{x^{2}-y^{2}} by the reciprocal of \frac{2y}{\left(x+y\right)\left(x-y\right)}.
\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x^{2}-y^{2}\right)}
Cancel out y in both numerator and denominator.
\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x+y\right)\left(x-y\right)}
Factor the expressions that are not already factored.
\frac{x}{2}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y}{\left(x+y\right)\left(x-y\right)}-\frac{x-y}{\left(x+y\right)\left(x-y\right)}})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-y and x+y is \left(x+y\right)\left(x-y\right). Multiply \frac{1}{x-y} times \frac{x+y}{x+y}. Multiply \frac{1}{x+y} times \frac{x-y}{x-y}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}})
Since \frac{x+y}{\left(x+y\right)\left(x-y\right)} and \frac{x-y}{\left(x+y\right)\left(x-y\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{x+y-x+y}{\left(x+y\right)\left(x-y\right)}})
Do the multiplications in x+y-\left(x-y\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{xy}{x^{2}-y^{2}}}{\frac{2y}{\left(x+y\right)\left(x-y\right)}})
Combine like terms in x+y-x+y.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{xy\left(x+y\right)\left(x-y\right)}{\left(x^{2}-y^{2}\right)\times 2y})
Divide \frac{xy}{x^{2}-y^{2}} by \frac{2y}{\left(x+y\right)\left(x-y\right)} by multiplying \frac{xy}{x^{2}-y^{2}} by the reciprocal of \frac{2y}{\left(x+y\right)\left(x-y\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x^{2}-y^{2}\right)})
Cancel out y in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(x+y\right)\left(x-y\right)}{2\left(x+y\right)\left(x-y\right)})
Factor the expressions that are not already factored in \frac{x\left(x+y\right)\left(x-y\right)}{2\left(x^{2}-y^{2}\right)}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x}{2})
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{1}{2}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{1}{2}x^{0}
Subtract 1 from 1.
\frac{1}{2}\times 1
For any term t except 0, t^{0}=1.
\frac{1}{2}
For any term t, t\times 1=t and 1t=t.