Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{xy\left(x^{2}+x\right)}{\left(x^{2}-1\right)\left(x^{2}-x-6\right)}\times \frac{x^{2}-2x-3}{x^{2}y+xy}
Divide \frac{xy}{x^{2}-1} by \frac{x^{2}-x-6}{x^{2}+x} by multiplying \frac{xy}{x^{2}-1} by the reciprocal of \frac{x^{2}-x-6}{x^{2}+x}.
\frac{y\left(x+1\right)x^{2}}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}-2x-3}{x^{2}y+xy}
Factor the expressions that are not already factored in \frac{xy\left(x^{2}+x\right)}{\left(x^{2}-1\right)\left(x^{2}-x-6\right)}.
\frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)}\times \frac{x^{2}-2x-3}{x^{2}y+xy}
Cancel out x+1 in both numerator and denominator.
\frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)}\times \frac{\left(x-3\right)\left(x+1\right)}{xy\left(x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-2x-3}{x^{2}y+xy}.
\frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)}\times \frac{x-3}{xy}
Cancel out x+1 in both numerator and denominator.
\frac{yx^{2}\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+2\right)xy}
Multiply \frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)} times \frac{x-3}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\left(x-1\right)\left(x+2\right)}
Cancel out xy\left(x-3\right) in both numerator and denominator.
\frac{x}{x^{2}+x-2}
Use the distributive property to multiply x-1 by x+2 and combine like terms.
\frac{xy\left(x^{2}+x\right)}{\left(x^{2}-1\right)\left(x^{2}-x-6\right)}\times \frac{x^{2}-2x-3}{x^{2}y+xy}
Divide \frac{xy}{x^{2}-1} by \frac{x^{2}-x-6}{x^{2}+x} by multiplying \frac{xy}{x^{2}-1} by the reciprocal of \frac{x^{2}-x-6}{x^{2}+x}.
\frac{y\left(x+1\right)x^{2}}{\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)}\times \frac{x^{2}-2x-3}{x^{2}y+xy}
Factor the expressions that are not already factored in \frac{xy\left(x^{2}+x\right)}{\left(x^{2}-1\right)\left(x^{2}-x-6\right)}.
\frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)}\times \frac{x^{2}-2x-3}{x^{2}y+xy}
Cancel out x+1 in both numerator and denominator.
\frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)}\times \frac{\left(x-3\right)\left(x+1\right)}{xy\left(x+1\right)}
Factor the expressions that are not already factored in \frac{x^{2}-2x-3}{x^{2}y+xy}.
\frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)}\times \frac{x-3}{xy}
Cancel out x+1 in both numerator and denominator.
\frac{yx^{2}\left(x-3\right)}{\left(x-3\right)\left(x-1\right)\left(x+2\right)xy}
Multiply \frac{yx^{2}}{\left(x-3\right)\left(x-1\right)\left(x+2\right)} times \frac{x-3}{xy} by multiplying numerator times numerator and denominator times denominator.
\frac{x}{\left(x-1\right)\left(x+2\right)}
Cancel out xy\left(x-3\right) in both numerator and denominator.
\frac{x}{x^{2}+x-2}
Use the distributive property to multiply x-1 by x+2 and combine like terms.