Solve for c
c=\frac{xy}{x^{2}+y^{2}}
y\neq 0\text{ or }x\neq 0
Solve for x
\left\{\begin{matrix}x=-\frac{y\left(\sqrt{1-4c^{2}}-1\right)}{2c}\text{; }x=\frac{y\left(\sqrt{1-4c^{2}}+1\right)}{2c}\text{, }&c\neq 0\text{ and }y\neq 0\text{ and }|c|\leq \frac{1}{2}\\x=0\text{, }&c=0\text{ and }y\neq 0\\x\neq 0\text{, }&c=0\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
xy=c\left(x^{2}+y^{2}\right)
Multiply both sides of the equation by x^{2}+y^{2}.
xy=cx^{2}+cy^{2}
Use the distributive property to multiply c by x^{2}+y^{2}.
cx^{2}+cy^{2}=xy
Swap sides so that all variable terms are on the left hand side.
\left(x^{2}+y^{2}\right)c=xy
Combine all terms containing c.
\frac{\left(x^{2}+y^{2}\right)c}{x^{2}+y^{2}}=\frac{xy}{x^{2}+y^{2}}
Divide both sides by x^{2}+y^{2}.
c=\frac{xy}{x^{2}+y^{2}}
Dividing by x^{2}+y^{2} undoes the multiplication by x^{2}+y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}