Evaluate
\frac{-hx_{0}+x_{0}-h^{2}-2}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Expand
\frac{-hx_{0}+x_{0}-h^{2}-2}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Share
Copied to clipboard
\frac{\left(x_{0}+h+1\right)\left(x_{0}-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}-\frac{\left(x_{0}+h\right)\left(x_{0}+h-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x_{0}+h-2 and x_{0}-2 is \left(x_{0}-2\right)\left(x_{0}+h-2\right). Multiply \frac{x_{0}+h+1}{x_{0}+h-2} times \frac{x_{0}-2}{x_{0}-2}. Multiply \frac{x_{0}+h}{x_{0}-2} times \frac{x_{0}+h-2}{x_{0}+h-2}.
\frac{\left(x_{0}+h+1\right)\left(x_{0}-2\right)-\left(x_{0}+h\right)\left(x_{0}+h-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Since \frac{\left(x_{0}+h+1\right)\left(x_{0}-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)} and \frac{\left(x_{0}+h\right)\left(x_{0}+h-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x_{0}^{2}-2x_{0}+hx_{0}-2h+x_{0}-2-x_{0}^{2}-x_{0}h+2x_{0}-x_{0}h-h^{2}+2h}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Do the multiplications in \left(x_{0}+h+1\right)\left(x_{0}-2\right)-\left(x_{0}+h\right)\left(x_{0}+h-2\right).
\frac{x_{0}-hx_{0}-2-h^{2}}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Combine like terms in x_{0}^{2}-2x_{0}+hx_{0}-2h+x_{0}-2-x_{0}^{2}-x_{0}h+2x_{0}-x_{0}h-h^{2}+2h.
\frac{x_{0}-hx_{0}-2-h^{2}}{x_{0}^{2}+hx_{0}-4x_{0}-2h+4}
Expand \left(x_{0}-2\right)\left(x_{0}+h-2\right).
\frac{\left(x_{0}+h+1\right)\left(x_{0}-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}-\frac{\left(x_{0}+h\right)\left(x_{0}+h-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x_{0}+h-2 and x_{0}-2 is \left(x_{0}-2\right)\left(x_{0}+h-2\right). Multiply \frac{x_{0}+h+1}{x_{0}+h-2} times \frac{x_{0}-2}{x_{0}-2}. Multiply \frac{x_{0}+h}{x_{0}-2} times \frac{x_{0}+h-2}{x_{0}+h-2}.
\frac{\left(x_{0}+h+1\right)\left(x_{0}-2\right)-\left(x_{0}+h\right)\left(x_{0}+h-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Since \frac{\left(x_{0}+h+1\right)\left(x_{0}-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)} and \frac{\left(x_{0}+h\right)\left(x_{0}+h-2\right)}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x_{0}^{2}-2x_{0}+hx_{0}-2h+x_{0}-2-x_{0}^{2}-x_{0}h+2x_{0}-x_{0}h-h^{2}+2h}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Do the multiplications in \left(x_{0}+h+1\right)\left(x_{0}-2\right)-\left(x_{0}+h\right)\left(x_{0}+h-2\right).
\frac{x_{0}-hx_{0}-2-h^{2}}{\left(x_{0}-2\right)\left(x_{0}+h-2\right)}
Combine like terms in x_{0}^{2}-2x_{0}+hx_{0}-2h+x_{0}-2-x_{0}^{2}-x_{0}h+2x_{0}-x_{0}h-h^{2}+2h.
\frac{x_{0}-hx_{0}-2-h^{2}}{x_{0}^{2}+hx_{0}-4x_{0}-2h+4}
Expand \left(x_{0}-2\right)\left(x_{0}+h-2\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}