Solve for x
x=\frac{7y-15}{4}
y\neq 5
Solve for y
y=\frac{4x+15}{7}
x\neq 5
Graph
Share
Copied to clipboard
7\left(x-y\right)=3\left(x-5\right)
Variable x cannot be equal to 5 since division by zero is not defined. Multiply both sides of the equation by 7\left(x-5\right), the least common multiple of x-5,7.
7x-7y=3\left(x-5\right)
Use the distributive property to multiply 7 by x-y.
7x-7y=3x-15
Use the distributive property to multiply 3 by x-5.
7x-7y-3x=-15
Subtract 3x from both sides.
4x-7y=-15
Combine 7x and -3x to get 4x.
4x=-15+7y
Add 7y to both sides.
4x=7y-15
The equation is in standard form.
\frac{4x}{4}=\frac{7y-15}{4}
Divide both sides by 4.
x=\frac{7y-15}{4}
Dividing by 4 undoes the multiplication by 4.
x=\frac{7y-15}{4}\text{, }x\neq 5
Variable x cannot be equal to 5.
7\left(x-y\right)=3\left(x-5\right)
Multiply both sides of the equation by 7\left(x-5\right), the least common multiple of x-5,7.
7x-7y=3\left(x-5\right)
Use the distributive property to multiply 7 by x-y.
7x-7y=3x-15
Use the distributive property to multiply 3 by x-5.
-7y=3x-15-7x
Subtract 7x from both sides.
-7y=-4x-15
Combine 3x and -7x to get -4x.
\frac{-7y}{-7}=\frac{-4x-15}{-7}
Divide both sides by -7.
y=\frac{-4x-15}{-7}
Dividing by -7 undoes the multiplication by -7.
y=\frac{4x+15}{7}
Divide -4x-15 by -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}