Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{x-4}{2}\text{, }&x\neq -4\text{ and }x\neq 4\\y\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{x-4}{2}\text{, }&|x|\neq 4\\y\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x=2\left(y+2\right)\text{, }&y\neq -4\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(x-4\right)\left(x-y\right)=\left(x+4\right)y
Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of 4+x,x-4.
x^{2}-xy-4x+4y=\left(x+4\right)y
Use the distributive property to multiply x-4 by x-y.
x^{2}-xy-4x+4y=xy+4y
Use the distributive property to multiply x+4 by y.
x^{2}-xy-4x+4y-xy=4y
Subtract xy from both sides.
x^{2}-2xy-4x+4y=4y
Combine -xy and -xy to get -2xy.
x^{2}-2xy-4x+4y-4y=0
Subtract 4y from both sides.
x^{2}-2xy-4x=0
Combine 4y and -4y to get 0.
-2xy-4x=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2xy=-x^{2}+4x
Add 4x to both sides.
\left(-2x\right)y=4x-x^{2}
The equation is in standard form.
\frac{\left(-2x\right)y}{-2x}=\frac{x\left(4-x\right)}{-2x}
Divide both sides by -2x.
y=\frac{x\left(4-x\right)}{-2x}
Dividing by -2x undoes the multiplication by -2x.
y=\frac{x}{2}-2
Divide x\left(4-x\right) by -2x.
\left(x-4\right)\left(x-y\right)=\left(x+4\right)y
Multiply both sides of the equation by \left(x-4\right)\left(x+4\right), the least common multiple of 4+x,x-4.
x^{2}-xy-4x+4y=\left(x+4\right)y
Use the distributive property to multiply x-4 by x-y.
x^{2}-xy-4x+4y=xy+4y
Use the distributive property to multiply x+4 by y.
x^{2}-xy-4x+4y-xy=4y
Subtract xy from both sides.
x^{2}-2xy-4x+4y=4y
Combine -xy and -xy to get -2xy.
x^{2}-2xy-4x+4y-4y=0
Subtract 4y from both sides.
x^{2}-2xy-4x=0
Combine 4y and -4y to get 0.
-2xy-4x=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
-2xy=-x^{2}+4x
Add 4x to both sides.
\left(-2x\right)y=4x-x^{2}
The equation is in standard form.
\frac{\left(-2x\right)y}{-2x}=\frac{x\left(4-x\right)}{-2x}
Divide both sides by -2x.
y=\frac{x\left(4-x\right)}{-2x}
Dividing by -2x undoes the multiplication by -2x.
y=\frac{x}{2}-2
Divide x\left(4-x\right) by -2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}