Solve for m
m=\frac{n\left(x-n\right)}{x}
n\neq 0\text{ and }x\neq n\text{ and }x\neq 0
Solve for n (complex solution)
n=\frac{-\sqrt{x\left(x-4m\right)}+x}{2}
n=\frac{\sqrt{x\left(x-4m\right)}+x}{2}\text{, }m\neq 0\text{ and }x\neq 0
Solve for n
n=\frac{-\sqrt{x\left(x-4m\right)}+x}{2}
n=\frac{\sqrt{x\left(x-4m\right)}+x}{2}\text{, }m\neq 0\text{ and }\left(x>0\text{ or }x\leq 4m\right)\text{ and }\left(x<0\text{ or }x\geq 4m\right)\text{ and }\left(x=4m\text{ or }x\neq 0\right)
Graph
Share
Copied to clipboard
n\left(x-n\right)-m\left(x-m\right)=mm
Variable m cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by mn, the least common multiple of m,n.
n\left(x-n\right)-m\left(x-m\right)=m^{2}
Multiply m and m to get m^{2}.
nx-n^{2}-m\left(x-m\right)=m^{2}
Use the distributive property to multiply n by x-n.
nx-n^{2}-\left(mx-m^{2}\right)=m^{2}
Use the distributive property to multiply m by x-m.
nx-n^{2}-mx+m^{2}=m^{2}
To find the opposite of mx-m^{2}, find the opposite of each term.
nx-n^{2}-mx+m^{2}-m^{2}=0
Subtract m^{2} from both sides.
nx-n^{2}-mx=0
Combine m^{2} and -m^{2} to get 0.
-n^{2}-mx=-nx
Subtract nx from both sides. Anything subtracted from zero gives its negation.
-mx=-nx+n^{2}
Add n^{2} to both sides.
\left(-x\right)m=n^{2}-nx
The equation is in standard form.
\frac{\left(-x\right)m}{-x}=\frac{n\left(n-x\right)}{-x}
Divide both sides by -x.
m=\frac{n\left(n-x\right)}{-x}
Dividing by -x undoes the multiplication by -x.
m=-\frac{n^{2}}{x}+n
Divide n\left(-x+n\right) by -x.
m=-\frac{n^{2}}{x}+n\text{, }m\neq 0
Variable m cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}