Solve for b
b=\frac{2mx}{3}-\frac{4hm}{3}+x
m\neq 0
Solve for h
h=\frac{2mx+3x-3b}{4m}
m\neq 0
Graph
Share
Copied to clipboard
m\left(x-h+x\right)-3\left(b-x\right)=h\times 3m
Multiply both sides of the equation by 3m, the least common multiple of 3,m.
m\left(2x-h\right)-3\left(b-x\right)=h\times 3m
Combine x and x to get 2x.
2mx-mh-3\left(b-x\right)=h\times 3m
Use the distributive property to multiply m by 2x-h.
2mx-mh-3b+3x=h\times 3m
Use the distributive property to multiply -3 by b-x.
-mh-3b+3x=h\times 3m-2mx
Subtract 2mx from both sides.
-3b+3x=h\times 3m-2mx+mh
Add mh to both sides.
-3b+3x=4hm-2mx
Combine h\times 3m and mh to get 4hm.
-3b=4hm-2mx-3x
Subtract 3x from both sides.
-3b=4hm-3x-2mx
The equation is in standard form.
\frac{-3b}{-3}=\frac{4hm-3x-2mx}{-3}
Divide both sides by -3.
b=\frac{4hm-3x-2mx}{-3}
Dividing by -3 undoes the multiplication by -3.
b=\frac{2mx}{3}-\frac{4hm}{3}+x
Divide 4hm-2mx-3x by -3.
m\left(x-h+x\right)-3\left(b-x\right)=h\times 3m
Multiply both sides of the equation by 3m, the least common multiple of 3,m.
m\left(2x-h\right)-3\left(b-x\right)=h\times 3m
Combine x and x to get 2x.
2mx-mh-3\left(b-x\right)=h\times 3m
Use the distributive property to multiply m by 2x-h.
2mx-mh-3b+3x=h\times 3m
Use the distributive property to multiply -3 by b-x.
2mx-mh-3b+3x-h\times 3m=0
Subtract h\times 3m from both sides.
2mx-4mh-3b+3x=0
Combine -mh and -h\times 3m to get -4mh.
-4mh-3b+3x=-2mx
Subtract 2mx from both sides. Anything subtracted from zero gives its negation.
-4mh+3x=-2mx+3b
Add 3b to both sides.
-4mh=-2mx+3b-3x
Subtract 3x from both sides.
\left(-4m\right)h=3b-3x-2mx
The equation is in standard form.
\frac{\left(-4m\right)h}{-4m}=\frac{3b-3x-2mx}{-4m}
Divide both sides by -4m.
h=\frac{3b-3x-2mx}{-4m}
Dividing by -4m undoes the multiplication by -4m.
h=-\frac{3b-3x-2mx}{4m}
Divide -2mx+3b-3x by -4m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}