Evaluate
\frac{a\left(1+3a-4x\right)}{x^{2}-a^{2}}
Expand
\frac{a+3a^{2}-4ax}{x^{2}-a^{2}}
Graph
Share
Copied to clipboard
\frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)}-\frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+a and x-a is \left(x+a\right)\left(x-a\right). Multiply \frac{x-a}{x+a} times \frac{x-a}{x-a}. Multiply \frac{x+a}{x-a} times \frac{x+a}{x+a}.
\frac{\left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Since \frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)} and \frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Do the multiplications in \left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right).
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Combine like terms in x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}.
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Factor x^{2}-a^{2}.
\frac{-4xa+3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Since \frac{-4xa}{\left(x+a\right)\left(x-a\right)} and \frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)} have the same denominator, add them by adding their numerators.
\frac{-4xa+3a^{2}+a}{x^{2}-a^{2}}
Expand \left(x+a\right)\left(x-a\right).
\frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)}-\frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+a and x-a is \left(x+a\right)\left(x-a\right). Multiply \frac{x-a}{x+a} times \frac{x-a}{x-a}. Multiply \frac{x+a}{x-a} times \frac{x+a}{x+a}.
\frac{\left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Since \frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)} and \frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Do the multiplications in \left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right).
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Combine like terms in x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}.
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Factor x^{2}-a^{2}.
\frac{-4xa+3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Since \frac{-4xa}{\left(x+a\right)\left(x-a\right)} and \frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)} have the same denominator, add them by adding their numerators.
\frac{-4xa+3a^{2}+a}{x^{2}-a^{2}}
Expand \left(x+a\right)\left(x-a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}