Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)}-\frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+a and x-a is \left(x+a\right)\left(x-a\right). Multiply \frac{x-a}{x+a} times \frac{x-a}{x-a}. Multiply \frac{x+a}{x-a} times \frac{x+a}{x+a}.
\frac{\left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Since \frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)} and \frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Do the multiplications in \left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right).
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Combine like terms in x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}.
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Factor x^{2}-a^{2}.
\frac{-4xa+3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Since \frac{-4xa}{\left(x+a\right)\left(x-a\right)} and \frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)} have the same denominator, add them by adding their numerators.
\frac{-4xa+3a^{2}+a}{x^{2}-a^{2}}
Expand \left(x+a\right)\left(x-a\right).
\frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)}-\frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+a and x-a is \left(x+a\right)\left(x-a\right). Multiply \frac{x-a}{x+a} times \frac{x-a}{x-a}. Multiply \frac{x+a}{x-a} times \frac{x+a}{x+a}.
\frac{\left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Since \frac{\left(x-a\right)\left(x-a\right)}{\left(x+a\right)\left(x-a\right)} and \frac{\left(x+a\right)\left(x+a\right)}{\left(x+a\right)\left(x-a\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Do the multiplications in \left(x-a\right)\left(x-a\right)-\left(x+a\right)\left(x+a\right).
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{x^{2}-a^{2}}
Combine like terms in x^{2}-xa-xa+a^{2}-x^{2}-xa-xa-a^{2}.
\frac{-4xa}{\left(x+a\right)\left(x-a\right)}+\frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Factor x^{2}-a^{2}.
\frac{-4xa+3a^{2}+a}{\left(x+a\right)\left(x-a\right)}
Since \frac{-4xa}{\left(x+a\right)\left(x-a\right)} and \frac{3a^{2}+a}{\left(x+a\right)\left(x-a\right)} have the same denominator, add them by adding their numerators.
\frac{-4xa+3a^{2}+a}{x^{2}-a^{2}}
Expand \left(x+a\right)\left(x-a\right).