Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+4\right)\left(x-9\right)=3\times 56
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by 3\left(x+4\right), the least common multiple of 3,x+4.
x^{2}-5x-36=3\times 56
Use the distributive property to multiply x+4 by x-9 and combine like terms.
x^{2}-5x-36=168
Multiply 3 and 56 to get 168.
x^{2}-5x-36-168=0
Subtract 168 from both sides.
x^{2}-5x-204=0
Subtract 168 from -36 to get -204.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-204\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -5 for b, and -204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-204\right)}}{2}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+816}}{2}
Multiply -4 times -204.
x=\frac{-\left(-5\right)±\sqrt{841}}{2}
Add 25 to 816.
x=\frac{-\left(-5\right)±29}{2}
Take the square root of 841.
x=\frac{5±29}{2}
The opposite of -5 is 5.
x=\frac{34}{2}
Now solve the equation x=\frac{5±29}{2} when ± is plus. Add 5 to 29.
x=17
Divide 34 by 2.
x=-\frac{24}{2}
Now solve the equation x=\frac{5±29}{2} when ± is minus. Subtract 29 from 5.
x=-12
Divide -24 by 2.
x=17 x=-12
The equation is now solved.
\left(x+4\right)\left(x-9\right)=3\times 56
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by 3\left(x+4\right), the least common multiple of 3,x+4.
x^{2}-5x-36=3\times 56
Use the distributive property to multiply x+4 by x-9 and combine like terms.
x^{2}-5x-36=168
Multiply 3 and 56 to get 168.
x^{2}-5x=168+36
Add 36 to both sides.
x^{2}-5x=204
Add 168 and 36 to get 204.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=204+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=204+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{841}{4}
Add 204 to \frac{25}{4}.
\left(x-\frac{5}{2}\right)^{2}=\frac{841}{4}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{841}{4}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{29}{2} x-\frac{5}{2}=-\frac{29}{2}
Simplify.
x=17 x=-12
Add \frac{5}{2} to both sides of the equation.