Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-8}{\left(x+5\right)\left(4x+1\right)}+\frac{6}{3\left(4x+1\right)}
Factor 4x^{2}+21x+5. Factor 12x+3.
\frac{3\left(x-8\right)}{3\left(x+5\right)\left(4x+1\right)}+\frac{6\left(x+5\right)}{3\left(x+5\right)\left(4x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+5\right)\left(4x+1\right) and 3\left(4x+1\right) is 3\left(x+5\right)\left(4x+1\right). Multiply \frac{x-8}{\left(x+5\right)\left(4x+1\right)} times \frac{3}{3}. Multiply \frac{6}{3\left(4x+1\right)} times \frac{x+5}{x+5}.
\frac{3\left(x-8\right)+6\left(x+5\right)}{3\left(x+5\right)\left(4x+1\right)}
Since \frac{3\left(x-8\right)}{3\left(x+5\right)\left(4x+1\right)} and \frac{6\left(x+5\right)}{3\left(x+5\right)\left(4x+1\right)} have the same denominator, add them by adding their numerators.
\frac{3x-24+6x+30}{3\left(x+5\right)\left(4x+1\right)}
Do the multiplications in 3\left(x-8\right)+6\left(x+5\right).
\frac{9x+6}{3\left(x+5\right)\left(4x+1\right)}
Combine like terms in 3x-24+6x+30.
\frac{3\left(3x+2\right)}{3\left(x+5\right)\left(4x+1\right)}
Factor the expressions that are not already factored in \frac{9x+6}{3\left(x+5\right)\left(4x+1\right)}.
\frac{3x+2}{\left(x+5\right)\left(4x+1\right)}
Cancel out 3 in both numerator and denominator.
\frac{3x+2}{4x^{2}+21x+5}
Expand \left(x+5\right)\left(4x+1\right).
\frac{x-8}{\left(x+5\right)\left(4x+1\right)}+\frac{6}{3\left(4x+1\right)}
Factor 4x^{2}+21x+5. Factor 12x+3.
\frac{3\left(x-8\right)}{3\left(x+5\right)\left(4x+1\right)}+\frac{6\left(x+5\right)}{3\left(x+5\right)\left(4x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+5\right)\left(4x+1\right) and 3\left(4x+1\right) is 3\left(x+5\right)\left(4x+1\right). Multiply \frac{x-8}{\left(x+5\right)\left(4x+1\right)} times \frac{3}{3}. Multiply \frac{6}{3\left(4x+1\right)} times \frac{x+5}{x+5}.
\frac{3\left(x-8\right)+6\left(x+5\right)}{3\left(x+5\right)\left(4x+1\right)}
Since \frac{3\left(x-8\right)}{3\left(x+5\right)\left(4x+1\right)} and \frac{6\left(x+5\right)}{3\left(x+5\right)\left(4x+1\right)} have the same denominator, add them by adding their numerators.
\frac{3x-24+6x+30}{3\left(x+5\right)\left(4x+1\right)}
Do the multiplications in 3\left(x-8\right)+6\left(x+5\right).
\frac{9x+6}{3\left(x+5\right)\left(4x+1\right)}
Combine like terms in 3x-24+6x+30.
\frac{3\left(3x+2\right)}{3\left(x+5\right)\left(4x+1\right)}
Factor the expressions that are not already factored in \frac{9x+6}{3\left(x+5\right)\left(4x+1\right)}.
\frac{3x+2}{\left(x+5\right)\left(4x+1\right)}
Cancel out 3 in both numerator and denominator.
\frac{3x+2}{4x^{2}+21x+5}
Expand \left(x+5\right)\left(4x+1\right).