Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x-7}{\left(x-1\right)\left(x+5\right)}-\frac{x-9}{\left(x-2\right)\left(x+5\right)}
Factor x^{2}+4x-5. Factor x^{2}+3x-10.
\frac{\left(x-7\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}-\frac{\left(x-9\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+5\right) and \left(x-2\right)\left(x+5\right) is \left(x-2\right)\left(x-1\right)\left(x+5\right). Multiply \frac{x-7}{\left(x-1\right)\left(x+5\right)} times \frac{x-2}{x-2}. Multiply \frac{x-9}{\left(x-2\right)\left(x+5\right)} times \frac{x-1}{x-1}.
\frac{\left(x-7\right)\left(x-2\right)-\left(x-9\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
Since \frac{\left(x-7\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)} and \frac{\left(x-9\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-7x+14-x^{2}+x+9x-9}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
Do the multiplications in \left(x-7\right)\left(x-2\right)-\left(x-9\right)\left(x-1\right).
\frac{x+5}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
Combine like terms in x^{2}-2x-7x+14-x^{2}+x+9x-9.
\frac{1}{\left(x-2\right)\left(x-1\right)}
Cancel out x+5 in both numerator and denominator.
\frac{1}{x^{2}-3x+2}
Expand \left(x-2\right)\left(x-1\right).
\frac{x-7}{\left(x-1\right)\left(x+5\right)}-\frac{x-9}{\left(x-2\right)\left(x+5\right)}
Factor x^{2}+4x-5. Factor x^{2}+3x-10.
\frac{\left(x-7\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}-\frac{\left(x-9\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+5\right) and \left(x-2\right)\left(x+5\right) is \left(x-2\right)\left(x-1\right)\left(x+5\right). Multiply \frac{x-7}{\left(x-1\right)\left(x+5\right)} times \frac{x-2}{x-2}. Multiply \frac{x-9}{\left(x-2\right)\left(x+5\right)} times \frac{x-1}{x-1}.
\frac{\left(x-7\right)\left(x-2\right)-\left(x-9\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
Since \frac{\left(x-7\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)} and \frac{\left(x-9\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)\left(x+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}-2x-7x+14-x^{2}+x+9x-9}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
Do the multiplications in \left(x-7\right)\left(x-2\right)-\left(x-9\right)\left(x-1\right).
\frac{x+5}{\left(x-2\right)\left(x-1\right)\left(x+5\right)}
Combine like terms in x^{2}-2x-7x+14-x^{2}+x+9x-9.
\frac{1}{\left(x-2\right)\left(x-1\right)}
Cancel out x+5 in both numerator and denominator.
\frac{1}{x^{2}-3x+2}
Expand \left(x-2\right)\left(x-1\right).