Solve for x
x\geq \frac{117}{16}
Graph
Share
Copied to clipboard
6\left(x-7\right)-5\left(3-2x\right)\geq 60
Multiply both sides of the equation by 30, the least common multiple of 5,6. Since 30 is positive, the inequality direction remains the same.
6x-42-5\left(3-2x\right)\geq 60
Use the distributive property to multiply 6 by x-7.
6x-42-15+10x\geq 60
Use the distributive property to multiply -5 by 3-2x.
6x-57+10x\geq 60
Subtract 15 from -42 to get -57.
16x-57\geq 60
Combine 6x and 10x to get 16x.
16x\geq 60+57
Add 57 to both sides.
16x\geq 117
Add 60 and 57 to get 117.
x\geq \frac{117}{16}
Divide both sides by 16. Since 16 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}