Solve for x
x<-\frac{70}{29}
Graph
Share
Copied to clipboard
3\left(x-6x\right)+72<2\left(8x+1\right)-60x
Multiply both sides of the equation by 6, the least common multiple of 2,3. Since 6 is positive, the inequality direction remains the same.
3\left(-5\right)x+72<2\left(8x+1\right)-60x
Combine x and -6x to get -5x.
-15x+72<2\left(8x+1\right)-60x
Multiply 3 and -5 to get -15.
-15x+72<16x+2-60x
Use the distributive property to multiply 2 by 8x+1.
-15x+72<-44x+2
Combine 16x and -60x to get -44x.
-15x+72+44x<2
Add 44x to both sides.
29x+72<2
Combine -15x and 44x to get 29x.
29x<2-72
Subtract 72 from both sides.
29x<-70
Subtract 72 from 2 to get -70.
x<-\frac{70}{29}
Divide both sides by 29. Since 29 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}