Evaluate
-\frac{x}{4}+\frac{13}{4}-\frac{6}{x}
Expand
-\frac{x}{4}+\frac{13}{4}-\frac{6}{x}
Graph
Share
Copied to clipboard
\frac{4\left(x-6\right)}{4x}-\frac{\left(x-9\right)x}{4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{x-6}{x} times \frac{4}{4}. Multiply \frac{x-9}{4} times \frac{x}{x}.
\frac{4\left(x-6\right)-\left(x-9\right)x}{4x}
Since \frac{4\left(x-6\right)}{4x} and \frac{\left(x-9\right)x}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{4x-24-x^{2}+9x}{4x}
Do the multiplications in 4\left(x-6\right)-\left(x-9\right)x.
\frac{13x-24-x^{2}}{4x}
Combine like terms in 4x-24-x^{2}+9x.
\frac{4\left(x-6\right)}{4x}-\frac{\left(x-9\right)x}{4x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x and 4 is 4x. Multiply \frac{x-6}{x} times \frac{4}{4}. Multiply \frac{x-9}{4} times \frac{x}{x}.
\frac{4\left(x-6\right)-\left(x-9\right)x}{4x}
Since \frac{4\left(x-6\right)}{4x} and \frac{\left(x-9\right)x}{4x} have the same denominator, subtract them by subtracting their numerators.
\frac{4x-24-x^{2}+9x}{4x}
Do the multiplications in 4\left(x-6\right)-\left(x-9\right)x.
\frac{13x-24-x^{2}}{4x}
Combine like terms in 4x-24-x^{2}+9x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}