Solve for x
x = -\frac{185}{48} = -3\frac{41}{48} \approx -3.854166667
Graph
Share
Copied to clipboard
2\left(x-5\right)-5\left(7-2x\right)=30\left(2x+5\right)-10
Multiply both sides of the equation by 10, the least common multiple of 5,2.
2x-10-5\left(7-2x\right)=30\left(2x+5\right)-10
Use the distributive property to multiply 2 by x-5.
2x-10-35+10x=30\left(2x+5\right)-10
Use the distributive property to multiply -5 by 7-2x.
2x-45+10x=30\left(2x+5\right)-10
Subtract 35 from -10 to get -45.
12x-45=30\left(2x+5\right)-10
Combine 2x and 10x to get 12x.
12x-45=60x+150-10
Use the distributive property to multiply 30 by 2x+5.
12x-45=60x+140
Subtract 10 from 150 to get 140.
12x-45-60x=140
Subtract 60x from both sides.
-48x-45=140
Combine 12x and -60x to get -48x.
-48x=140+45
Add 45 to both sides.
-48x=185
Add 140 and 45 to get 185.
x=\frac{185}{-48}
Divide both sides by -48.
x=-\frac{185}{48}
Fraction \frac{185}{-48} can be rewritten as -\frac{185}{48} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}