Solve for x
x\geq -\frac{5}{3}
Graph
Share
Copied to clipboard
\frac{1}{4}x-\frac{5}{4}\leq x
Divide each term of x-5 by 4 to get \frac{1}{4}x-\frac{5}{4}.
\frac{1}{4}x-\frac{5}{4}-x\leq 0
Subtract x from both sides.
-\frac{3}{4}x-\frac{5}{4}\leq 0
Combine \frac{1}{4}x and -x to get -\frac{3}{4}x.
-\frac{3}{4}x\leq \frac{5}{4}
Add \frac{5}{4} to both sides. Anything plus zero gives itself.
x\geq \frac{5}{4}\left(-\frac{4}{3}\right)
Multiply both sides by -\frac{4}{3}, the reciprocal of -\frac{3}{4}. Since -\frac{3}{4} is negative, the inequality direction is changed.
x\geq \frac{5\left(-4\right)}{4\times 3}
Multiply \frac{5}{4} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
x\geq \frac{-20}{12}
Do the multiplications in the fraction \frac{5\left(-4\right)}{4\times 3}.
x\geq -\frac{5}{3}
Reduce the fraction \frac{-20}{12} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}