Solve for x
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Share
Copied to clipboard
\left(3x-2\right)\left(x-4\right)+x+7=\left(3x-2\right)\left(x-2\right)
Variable x cannot be equal to any of the values -7,\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3x-2\right)\left(x+7\right), the least common multiple of x+7,3x-2.
3x^{2}-14x+8+x+7=\left(3x-2\right)\left(x-2\right)
Use the distributive property to multiply 3x-2 by x-4 and combine like terms.
3x^{2}-13x+8+7=\left(3x-2\right)\left(x-2\right)
Combine -14x and x to get -13x.
3x^{2}-13x+15=\left(3x-2\right)\left(x-2\right)
Add 8 and 7 to get 15.
3x^{2}-13x+15=3x^{2}-8x+4
Use the distributive property to multiply 3x-2 by x-2 and combine like terms.
3x^{2}-13x+15-3x^{2}=-8x+4
Subtract 3x^{2} from both sides.
-13x+15=-8x+4
Combine 3x^{2} and -3x^{2} to get 0.
-13x+15+8x=4
Add 8x to both sides.
-5x+15=4
Combine -13x and 8x to get -5x.
-5x=4-15
Subtract 15 from both sides.
-5x=-11
Subtract 15 from 4 to get -11.
x=\frac{-11}{-5}
Divide both sides by -5.
x=\frac{11}{5}
Fraction \frac{-11}{-5} can be simplified to \frac{11}{5} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}