Solve for a
a=\frac{b\left(x-4\right)}{x+3}
x\neq 4\text{ and }b\neq 0\text{ and }x\neq -3
Solve for b
b=-\frac{a\left(x+3\right)}{4-x}
x\neq -3\text{ and }a\neq 0\text{ and }x\neq 4
Graph
Share
Copied to clipboard
b\left(x-4\right)=a\left(x+3\right)
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
bx-4b=a\left(x+3\right)
Use the distributive property to multiply b by x-4.
bx-4b=ax+3a
Use the distributive property to multiply a by x+3.
ax+3a=bx-4b
Swap sides so that all variable terms are on the left hand side.
\left(x+3\right)a=bx-4b
Combine all terms containing a.
\frac{\left(x+3\right)a}{x+3}=\frac{b\left(x-4\right)}{x+3}
Divide both sides by x+3.
a=\frac{b\left(x-4\right)}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
a=\frac{b\left(x-4\right)}{x+3}\text{, }a\neq 0
Variable a cannot be equal to 0.
b\left(x-4\right)=a\left(x+3\right)
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab, the least common multiple of a,b.
bx-4b=a\left(x+3\right)
Use the distributive property to multiply b by x-4.
bx-4b=ax+3a
Use the distributive property to multiply a by x+3.
\left(x-4\right)b=ax+3a
Combine all terms containing b.
\frac{\left(x-4\right)b}{x-4}=\frac{a\left(x+3\right)}{x-4}
Divide both sides by x-4.
b=\frac{a\left(x+3\right)}{x-4}
Dividing by x-4 undoes the multiplication by x-4.
b=\frac{a\left(x+3\right)}{x-4}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}