Solve for x
x<1
Graph
Share
Copied to clipboard
4\left(x-4\right)-3\left(3x+1\right)>-24
Multiply both sides of the equation by 12, the least common multiple of 3,4. Since 12 is positive, the inequality direction remains the same.
4x-16-3\left(3x+1\right)>-24
Use the distributive property to multiply 4 by x-4.
4x-16-9x-3>-24
Use the distributive property to multiply -3 by 3x+1.
-5x-16-3>-24
Combine 4x and -9x to get -5x.
-5x-19>-24
Subtract 3 from -16 to get -19.
-5x>-24+19
Add 19 to both sides.
-5x>-5
Add -24 and 19 to get -5.
x<\frac{-5}{-5}
Divide both sides by -5. Since -5 is negative, the inequality direction is changed.
x<1
Divide -5 by -5 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}